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Background

Chance-constrained stochastic
optimal control problem

The drunken spider problem’

> A drunken spider wants to take the ;
shortest path to home. P

» Probability of falling into the water
should be small — chance constraint Image credit [1]

" Kappen “Path integrals and symmetry breaking for optimal control theory", Journal of statistical mechanics: theory
and experiment, 2005, no. 11
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System Model

> State equation: Control-affine n-dimensional Ito process:

dx; = f(x;)dt + G(x:)uedt + X(x:)dwy, t € [to, T]

xto = X0

where w; is an n-dimensional Brownian motion.
» Safe region: X, boundary: 0X;
> Probability of failure:

Pfail = PXo,to \/ Xt ¢ A)C‘S
te(to, T
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System Model
> Exit time (final time):

T if x; € Xs,Vt € (to, T)
inf {t € (to, T) : xt ¢ Xs} otherwise

» Cost function: We assume cost function is quadratic in u;.

C(Xo, to, u()) =

[ 3 1
E / (V(xt, t)+ EutTR(xt, t)ut> dt +(xe,) - L(xe, € Xs)
to

Terminal cost
Running cost (e.g., distance from home)

(e.g., travel distance)




The University of Texas at Austin

Cockrell School of Engineering

Risk-constrained Stochastic Optimal Control (SOC)
Problem
t
min IEXO,tO[/ F(V(xt, t)—i—%utTR(xt, t)ut)dt + (xe,) - L(xe, € Xs)
u to
s.t. dxt = f(Xt)dt + G(Xt)utdt + Z(Xt)dwt, Xty = X0,

Pxo.to \/ x: ¢ Xs | <A (Chance constraint)
te(to, T

» This is a variable end-time problem - there is no cost after
the system fails.

» We consider end-to-end risk (not pointwise risk).
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Related Work (Non-Exhaustive)

Discrete-time approaches:

» |terative risk allocation scheme with Boole’s bound [Ono et
al. 2008]: Boole's bound is used to approximate the joint
chance constraint and the user-specified risk “budget" is
allocated optimally between timesteps.

» Lagrangian relaxation with Boole’s bound [Ono et al. 2015]:
Joint chance constraint is approximated using Boole's
inequality, and Lagrangian relaxation is used to obtain an
unconstrained optimal control problem which is solved
using dynamic programming.

» Sampling-based approaches [Blackmore et al. 2010]

» Reinforcement learning [Huang et al. 2021]
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Related Work (Non-Exhaustive)

Continuous-time approaches:

» Generalized polynomial chaos [Nakka et al. 2019]: A
stochastic optimal control problem is converted to a
deterministic optimal control problem using generalized
polynomial chaos expansion and then solved using
sequential convex programming.

» Stochastic Control Barrier Functions [Santoyo et al. 2019]:
Stochastic control barrier functions are used to derive
sufficient conditions on the control input that bound the
probability of failure.

» Reflection principle [Ariu et al. 2017]: Reflection principle of

Brownian motion along with Boole's inequality is used to
bound the failure probability in continuous-time.
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Risk-Constrained SOC — Risk-Minimizing SOC

» Since a hard chance-constraint is difficult to deal with, we
introduce a new objective function with a soft
chance-constraint:

Cx0, to, u(+)) = Clxo0, to, u(")) + 1Prgto | \/  Xe & Ao
te(to, T
where 7 > 0 is the Lagrange multiplier.
» Notice that P, can be expressed in terms of the exit time as

PXoJ—“o \/ Xt ¢ Xs | = Exo,to []l(th S 8)(5)]
te(to, T
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Risk-Constrained SOC — Risk-Minimizing SOC

» Introduce a new terminal cost function ¢ : Xs — R as

o(x) = Yx)-LixeXs) + n-1(xe ;)
—— ——

Terminal costwhents = T Terminal costwhenty < T

> Pr,; is now absorbed in the new terminal cost function ¢ as

~

(0, to, () = Fg 1 [ /: (V(xt, £) + %UIR(XD t)ut) dt + ¢(xtf)] .
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Risk-Minimizing SOC Problem

tr 1

i B | [ (Vixe.t)+ jul Rixe uc) de + (x|
to

s.t. dXtL = f(Xt)dt + G(Xt)utdt + Z(xt)dwt, Xty = X0

» This problem has a time-additive Bellman structure suitable
for dynamic programming.

> Next we show that solving this problem (like many other
optimal control problem to which dynamic programming is
applicable) is equivalent to solving a Hamilton Jacobi
Bellman (HJB) partial differential equation (PDE).

» The regularizer n > 0 for the chance-constraint will appear
as a Dirichlet boundary condition for the HJB PDE.
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Value Function

» For each state-time pair (x, t), define the value function for
the risk-minimizing SOC as

Jx,£) = min C(x, t, u(-))

where
Clx, t,u(-)) = By [ /t ’ (V(xs, s)+ %UIR(XS, s)us> ds + ¢(xt,)] .

> We are interested in finding a PDE that J(x, t) will satisfy in
the domain (x, t) € Q, where Q'is ...
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Domain of the HJB PDE

Q = XS X [to,T)
T—— 0Q = (8X, x [to, T]) U (X, x {T})
Q=0QuUdQ =X, x [to,T]

o5}
=
g
S
x
>

V1

M Success:

Failure: tr<T

Time, t
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Verification Theorem

Suppose there exists a function J : @ — R such that (i) J(x, t) is
continuously differentiable in t and twice continuously
differentiable in x in Q, and (ii) J(x, t) solves the HJB PDE:

1 1
—Or )= —5(aXJ)Tc;/?—lc;TaXJerr fTaXJ+§Tr(zzTa§J), Y(x, t)eQ

lim  J(x,t) = ¢(y), V(y,t) € 0Q (Dirichlet BC)
()= (y:t)
Then,
1. J(x, t) is the value function for the risk-minimizing SOC,
i.e., J(x,t) = min,y C(x, t,u(-));

2. The optimal control is given by
ut(x,t) = —R7Y(x, t)G T (x, t)0xJ(x, t).
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HJB PDE: Boundary Conditions

State, x
J(Zt) =7

5% RN I :
: 1
b =8 J =~ 5(0:J)GRT'GT 9, J +V

Xs Free — t 2l ) <— J(z,t) = ¥(z)

: + £ 10 J + 51&(22%@1)

8-)(3 """""""" E /‘\
: J(x7 t) - TI Time, t
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Verification Theorem: Sketch of Proof

By Dynkin’s formula, we have

Exe (e, )] = J(x,8) + Bt | J}7 dJ (x5, 5)].

» J(x¢,, tr)= ¢(x¢,) by boundary condition.

» Using Ito’s formula, dJ can be computed as

1
dJ(xs,s)= (D¢ J)ds+(f+ Gu)T(aXJ)ds+(2dws)TaXJ+ETr(zzTaiJ)ds
Therefore

J(x, t) = By t[b(xe,)] — Xt[/ tf@tJ+(f+Gu)T(8XJ)+;Tr(ZZTaﬁJ)>ds]



The University of Texas at Austin

Cockrell School of Engineering

Verification Theorem: Sketch of Proof

Notice that the RHS of the HJB PDE can be written as
—0¢d = —3(0xJ) T GRTIGT O J + V + F 10, J + ATr(ZX T 92J)
— miin [%UTRU YV (f+ Gu) 0 + %Tr(zzTaiJ)}
Therefore, —0;J < JuTRu+ V + (f + Gu) "0, J + Tr(£X792))
holds for any u (equality holds iff u = —R~1G "0, J).

Substituting this result to the last equation in the previous slide,
we obtain

J(x,t) < B e(xe,)] + Bt [/ttf (;UTRU + v)] = Clxt, u()).

~

Thus, we have shown that J(x, t) = min, C(x, t, u(-)).



The University of Texas at Austin

Cockrell School of Engineering

Outline

Risk Estimation



The University of Texas at Austin

Cockrell School of Engineering

Risk Estimation

» Risk estimation of a given policy is a special case of our
risk-minimizing SOC problem.
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Risk Estimation

> Risk estimation of a given policy is a special case of our
risk-minimizing SOC problem.
» Suppose, ¥(x) =0, R(x,t) =0, V(x,t) =0, n=1, then

$(x) = Lxeorn, € (x0, to, u(-)) =Exg o Ln(t)com.] = Prail
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Risk Estimation

> Risk estimation of a given policy is a special case of our
risk-minimizing SOC problem.
» Suppose, ¥(x) =0, R(x,t) =0, V(x,t) =0, n=1, then

$(x) = Lxeorn, € (x0, to, u(-)) =Exg o Ln(t)com.] = Prail

Suppose there exists a continuous function J : @ — R that
solves the following PDE:

—0¢J=(f+gu) T8XJ+%TI’(O'O'T8)2(J)7 (x,t)€Q,
J(x,t) = o(x), (x,t)€0Q.

Then, Py = J(Xg, to).
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Finite Difference Method
Path Integral Method
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Finite Difference Method (FDM)

One of the most popular approaches to solve PDEs.
Computational domain Q is discretized into a finite number of
grid points and the solution to the PDE is sought at these

locations.
Example: Drunken spider (velocity input model)

» State (px, py): Position of the spider

dpx = —kypxdt + uxdt + ocdwy
dpy, = —k,pydt + u,dt + odw,

> Running cost: V(x;) = p2, + p2,
> Terminal cost: ¢(x7) = p2 1 +p2 1
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Finite Difference Method: Example

© Spider
|—Saber spider trajectory
| Drunk spider trajectory (spider dies)

spider reaches home

J (X s t())
. ‘ V | —Drunk spider trajector pider



https://www.youtube.com/watch?v=iU85CW66FUI
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Limitations of FDM

» Curse of dimensionality - Gridding is prohibitive for
problems with higher dimensions.

» HJB equation for our SOC must be solved backward-in-time,
which is inconvenient for real-time implementations.

» FDM computes the global solution J(x, t) over the entire
domain Q even if the majority of the state-time pairs (x, t)
will never be visited by the actual system.



The University of Texas at Austin

Cockrell School of Engineering

Limitations of FDM

» Curse of dimensionality - Gridding is prohibitive for
problems with higher dimensions.

» HJB equation for our SOC must be solved backward-in-time,
which is inconvenient for real-time implementations.

» FDM computes the global solution J(x, t) over the entire
domain Q even if the majority of the state-time pairs (x, t)
will never be visited by the actual system.

We want an algorithm to compute J(x, t) and

u*(x,t) = —R71G 0, J(x, t) on-the-fly for the current

state-time pair (x, t).
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Path Integral Method

>

Computes the solution J(x, t) of the H)B equation at an
arbitrary (x, t) using forward-in-time Monte-Carlo
simulations of system trajectories.

J(x, t) is computed by the empirical mean of the path cost
(“path integral") of the simulated sample paths.

Optimal control u*(x, t) can also be computed by
Monte-Carlo simulation without solving HJB equation
backward in time.

Massively parallelizable on GPUs.

Path integral method is considered less susceptible to curse
of dimensionality
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Path Integral Control: Theorem

Suppose there exists a constant A > 0 such that

¥y" = \GR'G.
Then, for each (x, t) € Q, we have
1 [t 1
J(x,t) = —AlogE [exp <—/ V(x¢)dt — gb(xt)ﬂ
AJe A
where E[-] is with respect to the distribution generated by the

“uncontrolled" dynamics dx; = fdt + Xdws.
Moreover, u*(x,t) = —R7Y(x, t)G " (x, t)0xJ(x, t).
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Path Integral: Example

——Sober spider trajectory
—Drunk spider trajectory (spider drowns)
—Drunk spider trajectory (spider reaches home)



https://www.youtube.com/watch?v=vUvyI0ss0kk
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FDM vs Path Integral Method
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Prail vs n: Simulation study
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Path Integral Example

—— Sober spider trajectory



https://www.youtube.com/watch?v=ZAgaGixwFKg
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Summary

> We presented an approach to solve a risk-constrained SOC
problem for nonlinear system dynamics and cost functions.
We considered continuous-time, end-to-end risk without any
conservative approximation.

> Risk-constrained control problem is formulated using the
notion of exit time and converted it to a risk-minimizing SOC
problem which has a time-additive cost function

> We showed that risk-minimizing control synthesis is
equivalent to solving an HJB PDE with Dirichlet boundary
condition which can be tuned appropriately to achieve a
desired level of safety.

» The proposed risk-minimizing control problem can be
viewed as a generalization of the risk-estimation problem.

» Compared simulation results of FDM and path integral
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Future Work

» Connection between A and n (hard vs soft chance
constraints)

" patil et al., “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential Game via Path Integral Control", submit-
ted to ACC 2023

2 Yoon et al., “Sampling complexity of path integral methods for trajectory optimization”, ACC 2022
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Future Work
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» Chance-constrained stochastic games’
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Future Work

» Connection between A and n (hard vs soft chance
constraints)

» Chance-constrained stochastic games’
> Partially observable systems, mean-field games

> When exactly is path integral control better than alternatives
(e.g., DDP, DRL)?

» Sample complexity analysis of path integral control®

" patil et al., “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential Game via Path Integral Control", submit-
ted to ACC 2023

2 Yoon et al., “Sampling complexity of path integral methods for trajectory optimization”, ACC 2022



Thank you!

44444



	Background
	Related Work
	Risk-Minimizing SOC Problem
	Conversion to an equivalent HJB PDE
	Risk Estimation
	Solving HJB PDE
	Finite Difference Method
	Path Integral Method

	FDM vs Path Integral Method
	Pfail vs : Simulation study
	Summary
	Future Work

