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Background

Chance-constrained stochastic
optimal control problem

The drunken spider problem1

▶ A drunken spider wants to take the
shortest path to home.

▶ Probability of falling into the water
should be small→ chance constraint Image credit [1]

1 Kappen “Path integrals and symmetry breaking for optimal control theory", Journal of statisticalmechanics: theory
and experiment, 2005, no. 11
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System Model

▶ State equation: Control-affine n-dimensional Ito process:

dxxx t = f (xxx t)dt + G (xxx t)uuutdt +Σ(xxx t)dwww t , t ∈ [t0,T ]

xxx t0 = x0

wherewww t is an n-dimensional Brownian motion.
▶ Safe region: Xs , boundary: ∂Xs

▶ Probability of failure:

Pfail = Px0,t0

 ∨
t∈(t0,T ]

xxx t /∈ Xs

 .
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System Model

▶ Exit time (final time):

ttt f =

{
T if xxx t ∈ Xs ,∀t ∈ (t0,T )

inf {t ∈ (t0,T ) : xxx t /∈ Xs} otherwise

▶ Cost function: We assume cost function is quadratic in uuut .

C (x0, t0, u(·)) :=

E


∫ tttf

t0

(
V (xxx t , t) +

1
2
uuu⊤t R(xxx t , t)uuut

)
dt︸ ︷︷ ︸

Running cost
(e.g., travel distance)

+ψ(xxxtttf ) · 1(xxxtttf ∈ Xs)︸ ︷︷ ︸
Terminal cost

(e.g., distance from home)


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Risk-constrained Stochastic Optimal Control (SOC)
Problem

min
uuu

Ex0,t0

[∫ tttf

t0

(
V (xxx t , t)+

1
2
uuu⊤t R(xxx t , t)uuut

)
dt + ψ(xxxtttf ) · 1(xxxtttf ∈ Xs)

]
s.t. dxxx t = f (xxx t)dt + G (xxx t)uuutdt +Σ(xxx t)dwww t , xxx t0 = x0,

Px0,t0

 ∨
t∈(t0,T ]

xxx t /∈ Xs

 < ∆ (Chance constraint)

▶ This is a variable end-time problem – there is no cost after
the system fails.

▶ We consider end-to-end risk (not pointwise risk).
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Related Work (Non-Exhaustive)

Discrete-time approaches:
▶ Iterative risk allocation scheme with Boole’s bound [Ono et

al. 2008]: Boole’s bound is used to approximate the joint
chance constraint and the user-specified risk “budget" is
allocated optimally between timesteps.

▶ Lagrangian relaxation with Boole’s bound [Ono et al. 2015]:
Joint chance constraint is approximated using Boole’s
inequality, and Lagrangian relaxation is used to obtain an
unconstrained optimal control problem which is solved
using dynamic programming.

▶ Sampling-based approaches [Blackmore et al. 2010]
▶ Reinforcement learning [Huang et al. 2021]
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Related Work (Non-Exhaustive)

Continuous-time approaches:
▶ Generalized polynomial chaos [Nakka et al. 2019]: A

stochastic optimal control problem is converted to a
deterministic optimal control problem using generalized
polynomial chaos expansion and then solved using
sequential convex programming.

▶ Stochastic Control Barrier Functions [Santoyo et al. 2019]:
Stochastic control barrier functions are used to derive
sufficient conditions on the control input that bound the
probability of failure.

▶ Reflection principle [Ariu et al. 2017]: Reflection principle of
Brownian motion along with Boole’s inequality is used to
bound the failure probability in continuous-time.
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Risk-Constrained SOC→ Risk-Minimizing SOC
▶ Since a hard chance-constraint is difficult to deal with, we

introduce a new objective function with a soft
chance-constraint:

Ĉ (x0, t0, u(·)) = C (x0, t0, u(·)) + ηPx0,t0

 ∨
t∈(t0,T ]

xxx t /∈ Xs


where η > 0 is the Lagrange multiplier.

▶ Notice that Pfail can be expressed in terms of the exit time as

Px0,t0

 ∨
t∈(t0,T ]

xxx t /∈ Xs

 = Ex0,t0 [1(xxxtttf ∈ ∂Xs)]
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Risk-Constrained SOC→ Risk-Minimizing SOC
▶ Introduce a new terminal cost function ϕ : X s → R as

ϕ(x) := ψ(x) · 1(x ∈ Xs)︸ ︷︷ ︸
Terminal cost when tttf = T

+ η · 1(x ∈ ∂Xs)︸ ︷︷ ︸
Terminal cost when tttf < T

▶ Pfail is now absorbed in the new terminal cost function ϕ as

Ĉ (x0, t0, u(·)) = Ex0,t0

[∫ tttf

t0

(
V (xxx t , t) +

1
2
uuu⊤t R(xxx t , t)uuut

)
dt + ϕ(xxxtttf )

]
.
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Risk-Minimizing SOC Problem

min
uuu

Ex0,t0

[∫ tttf

t0

(
V (xxx t , t) +

1
2
uuu⊤t R(xxx t , t)uuut

)
dt + ϕ(xxxtttf )

]
s.t. dxxx t = f (xxx t)dt + G (xxx t)uuutdt +Σ(xxx t)dwww t , xxx t0 = x0

▶ This problem has a time-additive Bellman structure suitable
for dynamic programming.

▶ Next we show that solving this problem (like many other
optimal control problem to which dynamic programming is
applicable) is equivalent to solving a Hamilton Jacobi
Bellman (HJB) partial differential equation (PDE).

▶ The regularizer η > 0 for the chance-constraint will appear
as a Dirichlet boundary condition for the HJB PDE.
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Value Function

▶ For each state-time pair (x , t), define the value function for
the risk-minimizing SOC as

J(x , t) = min
u(·)

Ĉ (x , t, u(·))

where

Ĉ (x , t, u(·)) = Ex ,t

[∫ tttf

t

(
V (xxx s , s) +

1
2
uuu⊤s R(xxx s , s)uuus

)
ds + ϕ(xxxtttf )

]
.

▶ We are interested in finding a PDE that J(x , t) will satisfy in
the domain (x , t) ∈ Q, where Q is ...
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Domain of the HJB PDE
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Verification Theorem
Theorem:
Suppose there exists a function J : Q → R such that (i) J(x , t) is
continuously differentiable in t and twice continuously
differentiable in x in Q, and (ii) J(x , t) solves the HJB PDE:

−∂tJ=−1
2
(∂xJ)

⊤GR−1G⊤∂xJ+V+f⊤∂xJ+
1
2
Tr(ΣΣ⊤∂2

xJ), ∀(x , t)∈Q

lim
(x ,t)→(y ,t)

J(x , t) = ϕ(y), ∀(y , t) ∈ ∂Q (Dirichlet BC)

Then,
1. J(x , t) is the value function for the risk-minimizing SOC,
i.e., J(x , t) = minu(·) Ĉ (x , t, u(·));

2. The optimal control is given by
u∗(x , t) = −R−1(x , t)G⊤(x , t)∂xJ(x , t).
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HJB PDE: Boundary Conditions
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Verification Theorem: Sketch of Proof

By Dynkin’s formula, we have
Ex ,t [J(xxxtttf , ttt f )] = J(x , t) + Ex ,t

[∫ tttf
t dJ(xxx s , s)

]
.

▶ J(xxxtttf , ttt f )= ϕ(xxxtttf ) by boundary condition.
▶ Using Ito’s formula, dJ can be computed as

dJ(xxx s , s)=(∂tJ)ds+(f+Gu)⊤(∂xJ)ds+(Σdwww s)
⊤∂xJ+

1
2
Tr(ΣΣ⊤∂2

xJ)ds

Therefore

J(x , t)= Ex ,t [ϕ(xxxtttf )]−Ex ,t

[∫ tttf

f

(
∂tJ+(f+Gu)⊤(∂xJ)+

1
2
Tr(ΣΣ⊤∂2

xJ)

)
ds

]
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Verification Theorem: Sketch of Proof

Notice that the RHS of the HJB PDE can be written as

−∂tJ = −1
2(∂xJ)

⊤GR−1G⊤∂xJ + V + f ⊤∂xJ + 1
2Tr(ΣΣ

⊤∂2
xJ)

= min
u

[
1
2u

⊤Ru + V + (f + Gu)⊤∂xJ + 1
2Tr(ΣΣ

⊤∂2
xJ)

]
Therefore, −∂tJ ≤ 1

2u
⊤Ru + V + (f + Gu)⊤∂xJ + 1

2Tr(ΣΣ
⊤∂2

xJ)
holds for any u (equality holds iff u = −R−1G⊤∂xJ).
Substituting this result to the last equation in the previous slide,
we obtain

J(x , t) ≤ Ex ,t [ϕ(xxxtttf )]+Ex ,t

[∫ tttf

t

(
1
2
u⊤Ru + V

)]
= Ĉ (x , t, u(·)).

Thus, we have shown that J(x , t) = minu Ĉ (x , t, u(·)).



22/40

Outline

Background
Related Work
Risk-Minimizing SOC Problem
Conversion to an equivalent HJB PDE
Risk Estimation
Solving HJB PDE

Finite Difference Method
Path Integral Method

FDM vs Path Integral Method
Pfail vs η: Simulation study
Summary
Future Work



23/40

Risk Estimation
▶ Risk estimation of a given policy is a special case of our

risk-minimizing SOC problem.

▶ Suppose, ψ(x) ≡ 0, R(x , t) ≡ 0, V (x , t) ≡ 0, η = 1 , then

ϕ(x)=1x∈∂Xs , Ĉ (x0, t0, u(·))=Ex0,t0

[
1xxx(tttf )∈∂Xs

]
= Pfail.

Corollary:
Suppose there exists a continuous function J : Q → R that
solves the following PDE:−∂tJ=(f +gu)T∂xJ+

1
2
Tr
(
σσT∂2

xJ
)
, (x , t)∈Q,

J(x , t) = ϕ(x), (x , t)∈∂Q.

Then, Pfail = J(x0, t0).
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Finite Difference Method (FDM)

One of the most popular approaches to solve PDEs.
Computational domain Q is discretized into a finite number of
grid points and the solution to the PDE is sought at these
locations.
Example: Drunken spider (velocity input model)
▶ State (pppx ,pppy ): Position of the spider

dpppx = −kxpppxdt + uxdt + σdwww x

dpppy = −kypppydt + uydt + σdwww y

▶ Running cost: V (xt) = ppp2
x ,t + ppp2

y ,t

▶ Terminal cost: ψ(xT ) = ppp2
x ,T + ppp2

y ,T
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Finite Difference Method: Example

J(x , t0)

u∗(x , t0)

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

https://www.youtube.com/watch?v=iU85CW66FUI
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Limitations of FDM

▶ Curse of dimensionality – Gridding is prohibitive for
problems with higher dimensions.

▶ HJB equation for our SOC must be solved backward-in-time,
which is inconvenient for real-time implementations.

▶ FDM computes the global solution J(x , t) over the entire
domain Q even if the majority of the state-time pairs (x , t)
will never be visited by the actual system.

We want an algorithm to compute J(x , t) and
u∗(x , t) = −R−1G⊤∂xJ(x , t) on-the-fly for the current
state-time pair (x , t).
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Path Integral Method

▶ Computes the solution J(x , t) of the HJB equation at an
arbitrary (x , t) using forward-in-time Monte-Carlo
simulations of system trajectories.

▶ J(x , t) is computed by the empirical mean of the path cost
(“path integral") of the simulated sample paths.

▶ Optimal control u∗(x , t) can also be computed by
Monte-Carlo simulation without solving HJB equation
backward in time.

▶ Massively parallelizable on GPUs.
▶ Path integral method is considered less susceptible to curse

of dimensionality
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Path Integral Control: Theorem

Theorem:
Suppose there exists a constant λ > 0 such that

ΣΣT = λGR−1GT .

Then, for each (x , t) ∈ Q, we have

J(x , t) = −λ logE
[
exp

(
− 1
λ

∫ tttf

t
V (xxx t)dt −

1
λ
ϕ(xxx t)

)]
where E[·] is with respect to the distribution generated by the
“uncontrolled" dynamics dxxx t = fdt +Σdwww t .
Moreover, u∗(x , t) = −R−1(x , t)G⊤(x , t)∂xJ(x , t).
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Path Integral: Example

https://www.youtube.com/watch?v=vUvyI0ss0kk
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FDM vs Path Integral Method
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Pfail vs η: Simulation study
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Path Integral Example

https://www.youtube.com/watch?v=ZAgaGixwFKg
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Summary
▶ We presented an approach to solve a risk-constrained SOC

problem for nonlinear system dynamics and cost functions.
We considered continuous-time, end-to-end risk without any
conservative approximation.

▶ Risk-constrained control problem is formulated using the
notion of exit time and converted it to a risk-minimizing SOC
problem which has a time-additive cost function

▶ We showed that risk-minimizing control synthesis is
equivalent to solving an HJB PDE with Dirichlet boundary
condition which can be tuned appropriately to achieve a
desired level of safety.

▶ The proposed risk-minimizing control problem can be
viewed as a generalization of the risk-estimation problem.

▶ Compared simulation results of FDM and path integral
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Future Work

▶ Connection between∆ and η (hard vs soft chance
constraints)

▶ Chance-constrained stochastic games1

▶ Partially observable systems, mean-field games
▶ When exactly is path integral control better than alternatives

(e.g., DDP, DRL)?
▶ Sample complexity analysis of path integral control2

1 Patil et al., “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential Game via Path Integral Control", submit-
ted to ACC 2023

2 Yoon et al., “Sampling complexity of path integral methods for trajectory optimization", ACC 2022
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Thank you!
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