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Background

▶ A supervisor delegates an agent to perform a certain
control task

▶ The agent is incentivized to deviate from the supervisor’s
policy to achieve its own goal

▶ Drone surveillance example
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Background

▶ Synthesis of the optimal deceptive policies for an agent
who attempts to hide its deviations from the supervisor’s
policy - KL control problem

▶ Minimizing the KL divergence - minimizing the detection
rate of the supervisor (log-likelihood ratio test, B-H
inequality)

▶ Nonlinear discrete-time continuous-state dynamics,
arbitrary cost functions and reference policies

▶ Path integral control - simulator driven control synthesis
framework

▶ The optimal deceptive policies can be numerically
computed online using Monte Carlo sampling
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Existing Approaches

▶ Deception framework [Shim et al. 2013, Wang et al. 2018]

▶ Deception problem in supervisory control for discrete-state
systems [Karabag et al. 2021, Keroglou et al. 2018]

▶ Detectability of an attacker that aims at maximizing the
state estimation error of a controller using
KL-divergence-based optimization problem [Bai et al. 2017,
Kung et at. 2016]

▶ KL control problem [Todorov 2007, Ito 2022]
▶ Path integral control [Kappen 2005, Theodorou 2010]: a

sampling-based algorithm to solve nonlinear stochastic
optimal control problems, less susceptible to the curse of
dimensionality
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Problem Formulation

▶ Agent’s dynamics: P(dxt+1|xt , ut)

▶ Supervisor’s policy: {RUt |Xt
(·|xt)}T−1

t=0

▶ Path cost: C0:T (x0:T , u0:T−1) :=
∑T−1

t=0 Ct(xt , ut) + CT (xT )

▶ Agent’s policy: {QUt |Xt
(·|xt)}T−1

t=0
▶ Distributions of the state-action paths under Q and R :

QX0:T ,U0:T−1 =
∏T−1

t=0
PXt+1|Xt ,Ut

QUt |Xt

RX0:T ,U0:T−1 =
∏T−1

t=0
PXt+1|Xt ,Ut

RUt |Xt
.

▶ Log likelihood ratio (LLR):
π(x0:T , u0:T−1) = log

dQX0:T×U0:T−1
dRX0:T×U0:T−1

(x0:T , u0:T−1)
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Problem Formulation

▶ Expected LLR: Π = EQ

[
log

dQX0:T×U0:T−1
dRX0:T×U0:T−1

(x0:T , u0:T−1)
]

▶ KL divergence:
Π = D(Q∥R)=EQ

[∑T−1
t=0 D(QUt |Xt

(·|Xt)∥RUt |Xt
(·|Xt))

]
▶ B-H inequality: Pr(E|R) + Pr(¬E|Q) ≥ 1

2 exp(−D(Q||R))
▶ Synthesis of optimal deceptive policy:

min
{QUt |Xt }

T−1
t=0

EQ

T−1∑
t=0

{
Ct(Xt ,Ut)

+ λD(QUt |Xt
(·|Xt)∥RUt |Xt

(·|Xt))
}
+ EQCT (XT )

where λ is a positive weighting factor that balances the
trade-off between the KL divergence and the path cost.
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Synthesis of Optimal Policies: Backward DP

▶ Define for each t ∈ T and xt ∈ Xt , the value function:

Jt(xt) := min
{QUk |Xk }

T−1
k=t

EQ

T−1∑
k=t

{
Ck(Xk ,Uk)

+ λD(QUk |Xk
(·|Xk)∥RUk |Xk

(·|Xk))
}
+ EQCT (XT ).

▶ Theorem 1: Jt(xt) satisfies the backward Bellman recursion
with the terminal condition JT (xT ) = CT (xT ):

Jt(xt) =− λ log

{∫
Ut

exp

(
−Ct(xt , ut)

λ

)

× exp

(
− 1
λ

∫
Xt+1

Jt+1(xt+1)P(dxt+1|xt , ut)
)
R(dut |xt)

}
...
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Synthesis of Optimal Policies: Backward DP

...and the minimizer is given by

Q∗
Ut |Xt

(BUt |xt)=

∫
BUt
exp(−ρt(xt , ut)/λ)R(dut |xt)∫

Ut
exp(−ρt(xt , ut)/λ)R(dut |xt)

where ρt(xt , ut) :=Ct(xt , ut) +
∫
Xt+1

Jt+1(xt+1)P(dxt+1|xt , ut) and
BUt is a Borel set belonging to the σ−algebra B(Ut).

▶ Recursive method to compute Jt(xt) and Q∗
Ut |Xt

backward
in time.

▶ Suffers from the curse of dimensionality.
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Synthesis of Optimal Policies: Path Integral Control

▶ Assumption: The state transition law is governed by a
deterministic mapping Ft : Xt × Ut → Xt+1 as
xt+1 = Ft(xt , ut).

▶ Value function is recursively defined as

Jt(xt) =− λ log

{∫
Ut

exp

(
−Ct(xt , ut)

λ

)

× exp

(
−Jt+1 (Ft(xt , ut))

λ

)
R(dut |xt)

}
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Synthesis of Optimal Policies: Path Integral Control

▶ Exponentiated value function as Zt(xt) := exp
(
− 1

λJt(xt)
)

▶ Linear recursion:

Zt(xt)=

∫
Ut

∫
Xt+1

exp

(
−Ct(xt , ut)

λ

)
Zt+1(xt+1)

× P(dxt+1|xt , ut)R(dut |xt).

where P(dxt+1|xt , ut) = δFt(xt ,ut)(dxt+1).
▶ By recursive substitution:

Zt(xt) =

∫
Ut

∫
Xt+1

· · ·
∫
UT−1

∫
XT

exp

(
−Ct(xt , ut)

λ

)
× · · · × exp

(
−CT (xT )

λ

)
R(dxt+1:T × dut:T−1|xt).
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Synthesis of Optimal Policies: Path Integral Control

▶ Introducing the path cost function
Ct:T (xt:T , ut:T−1) :=

∑T−1
k=t Ck(xk , uk) + CT (xT ),

Zt(xt) = ER exp

(
− 1
λ
Ct:T (Xt:T ,Ut:T−1)

)

▶ Numerical computation of Zt(xt):
Sample N independent paths {xt:T (i), ut:T−1(i)}Ni=1 under
the distribution R . If Ct:T (xt:T (i), ut:T−1(i)) represents the
path cost of the sample path i , then as N →∞,

1
N

N∑
i=1

exp

(
− 1
λ
Ct:T (xt:T (i), ut:T−1(i))

)
a.s.→ Zt(xt).
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Synthesis of Optimal Policies: Path Integral Control

▶ It can be shown that

Q∗
Ut |Xt

(BUt |xt) =
1

Zt(xt)

∫
{Xt+1:T ,Ut:T−1|ut∈BUt }

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
× R(dxt+1:T × dut:T−1|xt).

▶ Sampling ut approximately from Q∗
Ut |Xt

(·|xt) by Monte
Carlo simulations:

– Sample N independent paths {xt:T (i), ut:T−1(i)}Ni=1 under
the distribution R .

– Let rt(i) = Ct:T (xt:T (i), ut:T−1(i)) represents the path cost
of the sample path i and rt :=

∑N
i=1 rt(i).
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Synthesis of Optimal Policies: Path Integral Control

- For each t ∈ T , define

Ft(x) =

⌊x⌋∑
i=1

rt(i), F−1
t : [0, rt ]→ {1, 2, ...,N}.

( )

(1)

(2)

1 2 3 1

Ft (x)

1 for t ∈ T do
2 Sample N paths {xt:T (i), ut:T−1(i)}Ni=1 starting from xt

under the reference distribution R .
3 Compute rt(i) and rt :=

∑N
i=1 rt(i)

4 Generate d ∼ unif[0, rt ].
5 Select a sample ID by jt ← F−1

t (d).
6 Select a control input as ut ← ut(jt).
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Synthesis of Optimal Policies: Path Integral Control

▶ Theorem 2: Let BUt ∈ B(Ut) be a Borel set. Suppose for a
given collection of sample paths {xt:T (i), ut:T−1(i)}Ni=1, ut is
computed by the above Algorithm and the probability of
ut ∈ BUt is denoted by Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}.
Then, as N →∞

Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}
a.s.→ Q∗

Ut |Xt
(BUt |xt).

▶ Deceptive agent can numerically compute optimal actions
via Monte Carlo simulations without explicitly synthesizing
the policy.
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Theorem 2: Sketch of Proof

▶ Let IBUt
= {i ∈ {1, 2, . . . ,N}|ut(i) ∈ BUt}

▶ rBUt
=

∑
i∈IBUt

rt(i).

▶ By construction of the Algorithm

Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1} =
rBUt

rt
.

▶ As N →∞, rt
N

a.s.→ Zt(xt) and

rBUt

N
a.s.→

∫
{Xt+1:T , Ut:T−1|ut∈BUt }

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
× R(dxt+1:T , dut:T−1|xt)

▶ Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}
a.s.→ Q∗

Ut |Xt
(BUt |xt).
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Simualtions
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Figure: Paths under R , Prsafe = 0.04

▶ Agent’s dynamics: unicycle model

PX
t+1 = PX

t + St cosΘth PY
t+1 = PY

t + St sinΘth

St+1 = St + Ath Θt+1 = Θt +Ωth

▶ Start: origin, Goal: disk of radius GR centered at [GX GY ]⊤
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Simualtions

▶ Reference policy:

RUt |Xt
(·|xt) =

exp
[
−1

2(ut − ut)
⊤Σ−1

t (ut − ut)
]√

(2π)2|Σt |
,

where ut is designed using a proportional controller.

▶ Cost function:

C0:T (X0:T ,U0:T−1) =
T∑
t=0

1
[PX

t PY
t ]⊤∈Xfire

▶ Number of samples: 105
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Simualtions
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Conclusion

▶ Presented a deception problem under supervisory control
for continuous-state discrete-time stochastic systems.

▶ Formalized the synthesis of an optimal deceptive policy as
a KL control problem.

▶ Proposed a simulator-driven algorithm to compute optimal
deceptive actions online via MC sampling.

Check out the paper for more details and results.
▶ Future work:

– Deception problem for continuous-time stochastic systems.
– Sample complexity analysis of path integral approach to
solve KL control problems1.

1 Patil et al. "Sample Complexity of Discrete-Time Path-Integral Control," submitted to ECC 2024
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