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Background

» A supervisor delegates an agent to perform a certain
control task

» The agent is incentivized to deviate from the supervisor's
policy to achieve its own goal

» Drone surveillance example
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Background

» Synthesis of the optimal deceptive policies for an agent
who attempts to hide its deviations from the supervisor’'s
policy - KL control problem

> Minimizing the KL divergence - minimizing the detection
rate of the supervisor (log-likelihood ratio test, B-H
inequality)

» Nonlinear discrete-time continuous-state dynamics,
arbitrary cost functions and reference policies

» Path integral control - simulator driven control synthesis
framework

» The optimal deceptive policies can be numerically
computed online using Monte Carlo sampling
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>

Deception framework [Shim et al. 2013, Wang et al. 2018]

Deception problem in supervisory control for discrete-state
systems [Karabag et al. 2021, Keroglou et al. 2018]

Detectability of an attacker that aims at maximizing the
state estimation error of a controller using
KL-divergence-based optimization problem [Bai et al. 2017,
Kung et at. 2016]

KL control problem [Todorov 2007, Ito 2022]

Path integral control [Kappen 2005, Theodorou 2010]: a
sampling-based algorithm to solve nonlinear stochastic
optimal control problems, less susceptible to the curse of
dimensionality
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» Agent's dynamics: P(dxet1|xe, ut)

> Supervisor's policy: {Ry,ix, ([x¢) /o

> Path cost: Co.7(X0.7» Uo:T-1) == > 1o Ce(xe, ue) + Cr(xT)
> Agent's policy: {Quyx, (x)} o

» Distributions of the state-action paths under Q and R:

T-1
QXO:T,UO:T—I = Ht:O PXt+1|Xt,Ut QUt|Xt

T-1
RXO:TyUO:Tfl - Ht:O PXr+1|Xt,Ut RUt|Xt'

> Log likelihood ratio (LLR):
dQxy. 7 x Up.7—1

m(x0.7, 0. T-1) = log gre > > (x0.T, Uo:T-1)
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dQx,, .
> Expected LLR: M =Eg |log #(Xar, Uo:T—1)
0:7T 7 Y0:T—-1
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dQxo.7xUp.T—1

> Expected LLR: I = E¢ |log L —— (X0:7» Uo:T—1)

» KL divergence:
M= D(QIR)
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dQxo.7xUp.T—1

» Expected LLR: T =Eg [Iog (x0: 7 u0:T_1)}

dRxy. 1 x Ug. 71
» KL divergence:

M = D(QIR)=Eq |57 D(Quax, (1X) IRy (X))
> B-H inequality: Pr(£|R) + Pr(=&|Q) > 3 exp(—D(Q||R))
» Synthesis of optimal deceptive policy:

T-1
min_ Eg Z {Ct(Xta Ut)
t=0

{QUt [Xt };r:Bl

+ AD(Qui, (1X0)l| Ruyx, (1X0)) | + Eq Cr(X7)

where ) is a positive weighting factor that balances the
trade-off between the KL divergence and the path cost.
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» Define for each t € 7 and x; € X}, the value function:

T-1
Ji(x) = min_ Eqg Y. {Ck(Xk, Us)
{Quy 1x, Fizs —t

+ AD(Qu, 3, (1XIIRu x, (X)) | + EQCr(X7).
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Synthesis of Optimal Policies: Backward DP

» Define for each t € 7 and x; € X}, the value function:

T-1
Ji(x¢) ;== min_ Eq Ci( X, Ux)
T-1
{Quy 1x, Fizs K—t

+ AD(Qu, 3, (1XIIRu x, (X)) | + EQCr(X7).

» Theorem 1: J¢(x;) satisfies the backward Bellman recursion
with the terminal condition J7(x7) = Cr(x7):

Je(xt) :—Mog{/%exp <_C(X)\))

1
X exp <—>\/ i1 (xer1) P(dxes1|xe, ut)> R(dut]xt)}...
X

+1
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...and the minimizer is given by
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Synthesis of Optimal Policies: Backward DP

...and the minimizer is given by

« fBUteXp(—pt(xt, ug)/A)R(dug|xt)
Qut\xt(BUt\xr) = fut exp(—pe(xt, ur) /) R(due|x;)

where pi(x¢, ut) == Ce(x¢, ut) +th+1Jt+1(Xt+1)P(dXt+1’Xta ut) and
By, is a Borel set belonging to the c—algebra B(U4;).

» Recursive method to compute J;(x:) and Q) x, backward
in time.

» Suffers from the curse of dimensionality.
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» Assumption: The state transition law is governed by a
deterministic mapping F; : Xy x Uy — X141 @S
Xe+1 = Fe(xe, ug).

» Value function is recursively defined as

Je(xt) :—Mog{/utexp <_C(X/\U))

X exp <— Jet1 (F;(X“ “f))> R(dut]xt)}.
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> Exponentiated value function as Z;(x¢) := exp (—3Je(xt))
> Linear recursion:

Ci(x¢, u
Zt(xt):/ / exp (—t(;\t)> Zii1(Xe41)
Ur J X i
X P(dXt_A'_l‘Xt, Ut)R(dUt’Xt).

where P(dXt+1|Xt, Ut) = 6Ft(xt,ut)(dxt+1)'
> By recursive substitution:

=[], ] (5)

X -+ X exp ( CT(XT)) R(dxt+1:T X dut; T—1’Xt)~

A
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» Introducing the path cost function
Cor(XeT, UeT-1) 1= S p = Chlxks u) + Cr(x7),

1
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» Introducing the path cost function
Cor(XeT, UeT-1) 1= S p = Chlxks u) + Cr(x7),

1
Zt(Xt) = Erexp <_>\Ct:T(Xt:T7 Ut:T—l))

» Numerical computation of Z;(x;):
Sample N independent paths {x;.7 (i), uz.7-1(/) ,’.":1 under
the distribution R. If C..7(x¢.7(i), u.7—1(i)) represents the
path cost of the sample path /, then as N — oo,

N
% ; exp <_§\Ct:T(Xt:T(’.)’ Ut:Tl(i))> 2% Z(xt).
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» [t can be shown that

1 Ce.7(Xe:75 UpT—1)
Q5 1 (Bu.lxe) = / e (-
Ut|Xt( U |Xt) Zt(Xt) v, Xp Y

1.7 U T 1|ur€By, }

X R(dxet1.7 X dug.7-1|X¢).

» Sampling us approximately from Qi,t|xt(-\xt) by Monte
Carlo simulations:
- Sample N independent paths {7 (i), ur.7—1(/)}}, under
the distribution R.
- Let (1) = Cr.m(xe:7(P), up.7—1(1)) represents the path cost
of the sample path i and r; := Z,'.V:l re(1).
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- Foreach t € T, define

V(N){

[x] -3
Fe(x) = n(i), Fito[0,n] —{1,2,.., N},

e 0
i=1 rml,,H? |

r(1)

Fi(x)

fort € 7 do

Sample N paths {x.7(i), ur.7—1(i)}¥, starting from x;
under the reference distribution R.

Compute r;(i) and ry == SN r(i)

Generate d ~ unif|0, r¢].

Select a sample ID by j; « F;(d).

Select a control input as u; < u:(ji).

-

N

o U1 A~ W
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» Theorem 2: Let By, € B(U;) be a Borel set. Suppose for a
given collection of sample paths {x;.7(i), ur.7-1(i)};, ur is
computed by the above Algorithm and the probability of

ur € By, is denoted by Pr{u; € By, |{xt.7(i), ur.7-1(1)}¥;}.
Then,as N — oo

Pr{u: € By, [{xe.7(1), ur7-1() 1} 3 Q) x, (Bulxe)-
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» Theorem 2: Let By, € B(U;) be a Borel set. Suppose for a
given collection of sample paths {x;.7(i), ur.7-1(i)};, ur is
computed by the above Algorithm and the probability of
ur € By, is denoted by Pr{u; € By, |{xt.7(i), ur.7-1(1)}¥;}.
Then, as N — oo

Pr{u: € By, [{xe.7(1), ur7-1() 1} 3 Q) x, (Bulxe)-

> Deceptive agent can numerically compute optimal actions
via Monte Carlo simulations without explicitly synthesizing
the policy.
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> LetZg, ={i€{1,2,..., N} u(i) € By,}
> gy, = ZieIBUt re(i)-

» By construction of the Algorithm
. NN By,
Pr{ue € By, {xe.:7(i), ur.7-1(i)}ize} = P
t

> As N — oo, & 23 Z,(x;) and

rBUt a.s. Ct:T(Xt:T7 utZT—l)
N — exp | — )\
{ X1, U T —1|ut€By, }

X R(dxet 1.7, due.T-1x¢)

> Pr{u; € By [{xe.7(i), ue.T1 ()} } 55 Q) x, (Buelxe)-
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Simualtions

0 10 20 30 40 50
PX

Figure: Paths under R, Pr**® = 0.04

> Agent's dynamics: unicycle model

'Dt+1 'D + St cos©h 'Dt+1 P + S¢sin©:h
Stt1 =5t + Ach Ot11=0:+ Qh

» Start: origin, Goal: disk of radius GR centered at [GX GY]"



The University of Texas at Austin

Cockrell School of Engineering

Simualtions

» Reference policy:

exp [—%(ut — Ut)TZt_l(Ut - Ut)]
(2m)2 |24

Rugx. (+[xe) =

)

where @, is designed using a proportional controller.
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» Reference policy:

exp [—%(ut — Ut)TZt_l(Ut - Ut)]
(2m)2 |24

RUt|Xt('|Xf) = )
where @, is designed using a proportional controller.
» Cost function:

T

CO:T(XOZT) UO:T—l) - Z ]l[th PtY]TGXﬂre
t=0
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Simualtions

» Reference policy:

exp [—%(ut — Ut)TZt_l(Ut - Ut)]
(2m)2 |24

RUt|Xt('|Xf) = )
where @, is designed using a proportional controller.
» Cost function:

T

Co.7(XoT, Uoir—1) = ) Lipx pyyT csve
t=0

» Number of samples: 10°
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Conclusion

» Presented a deception problem under supervisory control
for continuous-state discrete-time stochastic systems.

» Formalized the synthesis of an optimal deceptive policy as
a KL control problem.
» Proposed a simulator-driven algorithm to compute optimal
deceptive actions online via MC sampling.
Check out the paper for more details and results.

» Future work:
- Deception problem for continuous-time stochastic systems.
- Sample complexity analysis of path integral approach to
solve KL control problems’.

" Patil et al. "Sample Complexity of Discrete-Time Path-Integral Control," submitted to ECC 2024
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