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Background
▶ Risk-minimizing two-player zero-sum

stochastic differential game: each
player aims to minimize its probability
of failure and the control cost.

▶ Failure occurs when the state of the
game enters into predefined
undesirable domains

▶ We solve continuous-time, nonlinear
two-player zero-sum stochastic
differential game online using path
integral control

▶ Existence and uniqueness of the
saddle-point of the game.

https://www.youtube.com/watch?v=RbTLXJtF148&ab_channel=ApurvaPatil
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Existing Approaches

▶ Hamilton-Jacobi-Isaacs partial differential equation
[Falcone et al. 2006]: grid-based approaches to solve the
HJI PDEs

; suffer from the curse of dimensionality,
precomputation required

▶ RL-based approaches: adaptive dynamic programming
[Vrabie et al. 2011] , deep RL [Prajapat et al. 2021], integral
RL [Liu et al. 2020], Bayesian inverse RL [Lin et al. 2017]
Challenges in learning-based approaches:

– Rigorous theoretical guarantees on convergence and
optimality

– Offline training required
▶ Above approaches do not explicitly take into account the

players’ failure probabilities
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Problem Formulation

▶ System: Itô stochastic differential equation (SDE)

dxxx(t) =f (xxx(t), t) dt + Gu (xxx(t), t) u(xxx(t), t)dt

+ Gv (xxx(t), t) v (xxx(t), t) dt +Σ(xxx(t), t) dwww(t)

▶ Safe region: Xs , boundary ∂Xs

▶ Agent’s probability of failure:

Pag
fail :=Px0,t0

 ∨
t∈(t0,T ]

xxx(t) /∈ Xs


▶ Adversary’s probability of failure Pad

fail := 1 − Pag
fail
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Problem Formulation

▶ Define a set Q = Xs × [t0,T ),
Boundary ∂Q = (∂Xs × [t0,T ]) ∪ (Xs × {T})

▶ Terminal time of the game: ttt f := inf{t > t0 : (xxx(t), t) /∈ Q}
▶ Agent’s failure probability Pag

fail:

Px0,t0

 ∨
t∈(t0,T ]

xxx(t) /∈ Xs

=Ex0,t0

[
1xxx(tttf )∈∂Xs

]
.

▶ Risk-minimizing cost function:

C (x0, t0; u, v) := η Ex0,t0

[
1xxx(tttf )∈∂Xs

]
+ Ex0,t0

[
ψ(xxx(ttt f))·1xxx(tttf )∈Xs

+

∫ tttf

t0

L(xxx(t),uuu(t),vvv(t), t)dt

]
.
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Problem Formulation

▶ Define: ϕ (x) := ψ (x) · 1x∈Xs + η · 1x∈∂Xs

▶ Running cost:

L(xxx ,uuu,vvv , t)=V (xxx , t)+
1
2
uuuTRu(xxx , t)uuu−

1
2
vvvTRv (xxx , t)vvv

▶ Risk-minimizing zero-sum SDG

min
u

max
v

Ex0,t0

[
ϕ (xxx(ttt f ))+

∫ tttf

t0

(
1
2
uuu⊤Ruuuu−

1
2
vvv⊤Rvvvv+V

)
dt

]
s.t. dxxx =fdt + Guudt + Gvvdt +Σdwww ,

xxx(t0) = x0.
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HJI PDE with Dirichlet Boundary Condition

▶ Cost-to-go function:

C (x , t; u, v) =Ex ,t

[
ϕ (xxx(ttt f ))

]
+ Ex ,t

[∫ tttf

t

(
1
2
uuu⊤Ruuuu − 1

2
vvv⊤Rvvvv + V

)
dt

]
.

▶ (u∗, v∗) constitutes a saddle-point solution if

C (x , t; u∗, v) ≤ C ∗ := C (x , t; u∗, v∗) ≤ C (x , t; u, v∗).

where the value of the game

C ∗ = min
u

max
v

C (x , t; u, v) = max
v

min
u

C (x , t; u, v) .
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HJI PDE with Dirichlet Boundary Condition

Theorem: Suppose there exists a function J : Q → R such that
(a) J(x , t) is continuously differentiable in t and twice

continuously differentiable in x in the domain Q;
(b) J(x , t) solves the following stochastic

Hamilton-Jacobi-Isaacs (HJI) PDE:

−∂tJ=V+f ⊤∂xJ+
1
2
Tr

(
ΣΣ⊤∂2

xJ
)

+
1
2
(∂xJ)

⊤
(
GvR

−1
v G⊤

v −GuR
−1
u G⊤

u

)
∂xJ,

∀(x , t)∈Q,

lim
(x ,t)→(y ,s)
(x ,t)∈Q

J(x , t) = ϕ(y), ∀(y , s) ∈ ∂Q.

(1)

...
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HJI PDE with Dirichlet Boundary Condition

...Then, the following statements hold:
(i) J(x , t) is the value of the game, i.e.

J (x , t) =min
u

max
v

C (x , t; u, v)

=max
v

min
u

C (x , t; u, v) , ∀ (x , t)∈Q.

(ii) The optimal solution is given by

u∗(x , t) = −R−1
u (x , t)Gu

⊤(x , t) ∂xJ(x , t) ,

v∗(x , t) = R−1
v (x , t)Gv

⊤(x , t) ∂xJ(x , t) .
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Path Integral Formulation

▶ Logarithmic transformation of the value function:
J(x , t) = −λ log (ξ (x , t))

▶ Assumption: For all (x , t) ∈ Q, there exists a constant
λ > 0 such that

Σ(x , t)Σ⊤(x , t)=λGu(x , t)R
−1
u (x , t)G⊤

u (x , t)

− λGv (x , t)R
−1
v (x , t)G⊤

v (x , t).

Partition of the system dynamics:[
dxxx (1)

dxxx (2)

]
=

[
f (1)(xxx , t)

f (2)(xxx , t)

]
dt +

[
0

Gu
(2)(xxx , t)

]
u(xxx , t)dt

+

[
0

Gv
(2)(xxx , t)

]
v(xxx , t)dt +

[
0

Σ(2)(xxx , t)

]
dwww
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Path Integral Formulation

▶ Linear PDE in ξ with Dirichlet boundary condition
∂tξ=

V ξ
λ −f ⊤∂xξ − 1

2Tr
(
ΣΣ⊤∂2

x ξ
)
, ∀(x , t)∈Q,

lim
(x ,t)→(y ,s)
(x ,t)∈Q

ξ(x , t)=exp
(
−ϕ(y)

λ

)
, ∀(y , s)∈∂Q.

▶ The solution of the above PDE exists and is unique1.
▶ The solution admits the Feynman-Kac representation.

1 Friedman, "Stochastic differential equations and applications, vol. 1."



17/29

Path Integral Formulation

▶ Linear PDE in ξ with Dirichlet boundary condition
∂tξ=

V ξ
λ −f ⊤∂xξ − 1

2Tr
(
ΣΣ⊤∂2

x ξ
)
, ∀(x , t)∈Q,

lim
(x ,t)→(y ,s)
(x ,t)∈Q

ξ(x , t)=exp
(
−ϕ(y)

λ

)
, ∀(y , s)∈∂Q.

▶ The solution of the above PDE exists and is unique1.

▶ The solution admits the Feynman-Kac representation.

1 Friedman, "Stochastic differential equations and applications, vol. 1."



17/29

Path Integral Formulation

▶ Linear PDE in ξ with Dirichlet boundary condition
∂tξ=

V ξ
λ −f ⊤∂xξ − 1

2Tr
(
ΣΣ⊤∂2

x ξ
)
, ∀(x , t)∈Q,

lim
(x ,t)→(y ,s)
(x ,t)∈Q

ξ(x , t)=exp
(
−ϕ(y)

λ

)
, ∀(y , s)∈∂Q.

▶ The solution of the above PDE exists and is unique1.
▶ The solution admits the Feynman-Kac representation.

1 Friedman, "Stochastic differential equations and applications, vol. 1."



18/29

Feynman-Kac Represenation

▶ Uncontrolled state dynamics:

dx̂xx(t)=f (x̂xx(t),t)dt+Σ(x̂xx(t),t)dwww(t)

▶ Let t̂tt f := inf{t > t0 : (x̂xx(t), t) /∈ Q}
▶ The solution of the linearized PDE (path integral form):

ξ (x , t) = Ex ,t

[
exp

(
− 1
λ
S (τ)

)]
where

S (τ) = ϕ
(
x̂xx(t̂tt f )

)
+

∫ t̂ttf

t
V (x̂xx(t), t) dt.
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Path Integral Formulation

Theorem: A saddle-point solution exists, is unique, and is given
by

u∗(x , t)dt=Gu(x , t)
Ex ,t

[
exp

(
− 1

λS (τ)
)
Σ(2)(x , t) dwww

]
Ex ,t

[
exp

(
− 1

λS (τ)
)] ,

where

Gu=R−1
u G

(2)
u

⊤
(
G

(2)
u R−1

u G
(2)
u

⊤
− G

(2)
v R−1

v G
(2)
v

⊤
)−1

and

v∗(x , t)dt=Gv (x , t)
Ex ,t

[
exp

(
− 1

λS (τ)
)
Σ(2)(x , t) dwww

]
Ex ,t

[
exp

(
− 1

λS (τ)
)] ,

where

Gv =−R−1
v G

(2)
v

⊤
(
G

(2)
u R−1

u G
(2)
u

⊤
− G

(2)
v R−1

v G
(2)
v

⊤
)−1

.
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v∗(x , t)dt=Gv (x , t)
Ex ,t

[
exp

(
− 1

λS (τ)
)
Σ(2)(x , t) dwww

]
Ex ,t

[
exp

(
− 1

λS (τ)
)] ,

where

Gv =−R−1
v G

(2)
v

⊤
(
G

(2)
u R−1

u G
(2)
u

⊤
− G

(2)
v R−1

v G
(2)
v

⊤
)−1

.
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Disturbance Attenuation

▶ Unicycle model:
dpppx
dpppy
dsss
dθθθ

=− k


pppx
pppy
sss
θθθ

 dt +


sss cosθθθ
sss sinθθθ

0
0

dt

+


0 0
0 0
1 0
0 1


[

a
ω

]
︸︷︷︸
u

dt+

[
∆a
∆ω

]
︸ ︷︷ ︸

v

dt+

[
σ 0
0 ν

]
dwww

 ,

▶ Problem to solve:

min
u

max
v

Ex0,t0

[
ϕ (xxx(ttt f ))+

∫ tttf

t0

(
1
2
uuu⊤uuu− γ2

2
vvvTvvv+V

)
dt

]
.
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Disturbance Attenuation

▶ Assumption: λ > 0 such that

λ

(
1 − 1

γ2

)
= 1.

▶ The problem admits a unique saddle-point solution if γ > 1
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Disturbance Attenuation

▶ MC trajectories: 104, Step size: 0.01
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Pursuit-Evasion Game

▶ Pursuer and evader models:

dpppEx = uxdt + σEx dwww
E
x , dpppPx = vxdt + σPx dwww

P
x ,

dpppEy = uydt + σEy dwww
E
y , dpppPy = vydt + σPy dwww

P
y ,

▶ In terms of relative position pppx = pppEx − pppPx , pppy = pppEy − pppPy :

dxxx =

[
dpppx
dpppy

]
=

[
ux
uy

]
dt −

[
vx
vy

]
dt +

[
σx 0
0 σy

]
dwww

σx =
√
(σEx )

2 + (σPx )
2, σy =

√
(σEy )

2 + (σPy )
2

▶ Origin coincides with the pursuer’s position and safe set
Xs :=

{
x ∈ R2 : ∥x∥ > ρ

}
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Pursuit Evasion Game

▶ Problem to solve:

min
u

max
v

Ex0,t0

[
ϕ (xxx(ttt f))+

∫ tttf

t0

(
1
2
uuuTuuu− rv

2

2
vvvTvvv+V

)
dt

]
.

▶ Assumption: λ > 0 such that

λ

(
1 − 1

rv 2

)
= 1.

▶ The problem admits a unique saddle-point solution if rv >1
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Pursuit Evasion Game
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Figure: The red disc of radius ρ = 0.1, centered at the origin
represents that the pursuer is within the distance ρ of the evader.
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Pursuit Evasion Game
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Figure: Failure probabilities of the agent (i.e., evader) as a function of
rv , when the players follow the saddle-point policies (u∗, v∗).
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Conclusion

▶ Presented an HJI-PDE-based solution approach for a
risk-minimizing two-player zero-sum stochastic differential
game (SDG). Each player tries to balance the trade-off
between the probability of failure and the control cost.

▶ Developed a path-integral framework and established the
existence and uniqueness of saddle point solution under
linearized HJI PDE.

▶ The presented approach allows the game to be solved
online without the need for any offline training or
precomputations.

▶ Future work:
– chance-constrained stochastic games in which each player
would aim to satisfy a hard bound on its failure probability.
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