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stochastic differential game: each
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of failure and the control cost.
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» Existence and uniqueness of the
saddle-point of the game.
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Existing Approaches

» Hamilton-Jacobi-Isaacs partial differential equation
[Falcone et al. 2006]: grid-based approaches to solve the
HJI PDEs; suffer from the curse of dimensionality,
precomputation required

» RL-based approaches: adaptive dynamic programming
[Vrabie et al. 2011], deep RL [Prajapat et al. 2021], integral

RL [Liu et al. 2020], Bayesian inverse RL [Lin et al. 2017]
Challenges in learning-based approaches:

- Rigorous theoretical guarantees on convergence and
optimality
- Offline training required
» Above approaches do not explicitly take into account the
players’ failure probabilities
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> System: Itd stochastic differential equation (SDE)
dx(t) =f (x(t),t) dt + G, (x(t), t) u(x(t), t)dt
+ G, (x(t),t) v (x(t),t)dt + X (x(t),t) dw(t)

» Safe region: &, boundary 0X;
> Agent's probability of failure:

Pgul PXo,to \/ X(t) ¢ Xs
te(to, T

> Adversary's probability of failure P24, .= 1 — Pg%
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» Defineaset Q = Xs x [ty, T),

Boundary 0Q = (0Xs x [to, T]) U (Xs x {T})
» Terminal time of the game: tf = inf{t > ty : (x(t),t) ¢ Q}
> Agent’s failure probability Pg&:

Pso,to \/ x(t) ¢ Xs =Eso,t0 []lx(tf)eaé‘fs]-
te(to, T]
» Risk-minimizing cost function:

C (X07 to; u, V) = nEXo,to []lx(tf)EGXs]

+ IElxo,f-“o [w(x(tf))']lx(tf)e& +/ z(X(t), u(t)7 V(t)v t)dt .

to
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> Define: ¢ (x) =9 (x) - Lyex, + 71 Lxeox.
» Running cost:

1 1
L(x,u,v,t)=V(x, t)+§uTRu(x, t) u—EvTRV(x, t)v

» Risk-minimizing zero-sum SDG

tr/] 1
muin max Eso.to |:¢) (x(tf))+/ <2uTRuu— 5vTRVv—i— V> dt]

to

s.t. dx =fdt + Gyudt + G, vdt + Ldw,

X(to) = Xp.
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HJI PDE with Dirichlet Boundary Condition

» Cost-to-go function:

C(x, tiu,v) =Ey ¢ [0 (x(tr)) ]

tr /1 1
+ Ex e [/ <2UTRUU - EVTRVV + V> dt] )
t
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HJI PDE with Dirichlet Boundary Condition

» Cost-to-go function:

C(x, tiu,v) =Ey ¢ [0 (x(tr)) ]
+ By Utf C"TR“" - %VTRVV * V) dt] '

> (u*, v*) constitutes a saddle-point solution if
C(x,t;u*,v) < C* = C(x, t;u",v*) < C(x, t;u,v").
where the value of the game

C* = minmax C (x, t; u,v) = maxmin C (x, t; u,v).
u v v u
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Theorem: Suppose there exists a function J : @ — R such that
(a) J(x,t)is continuously differentiable in t and twice
continuously differentiable in x in the domain Q;

(b) J(x,t) solves the following stochastic
Hamilton-Jacobi-Isaacs (HJI) PDE:

=V A0+ Ty (zzTaﬁj)
L 2 Y(x, t)€Q,
—1,-T —1,-T
+5(0:J) (GVRV Gl — GuR; Gu>8XJ, »
lim  J(x,t) = ¢(y), V(y,s) € 0Q.
() (19)
\ (X,t)EQ
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J(x,t) =minmax C (x, t; u, v)

=maxmin C (x, t;u,v), ¥V (x,t)€Q.
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...Then, the following statements hold:
(i) J(x,t)is the value of the game, i.e.

J(x,t) =minmax C (x, t; u, v)

=maxmin C (x, t;u,v), ¥V (x,t)€Q.

(i) The optimal solution is given by
ut(x,t) = —R; (x, t) G, '(x, t) B J(x, t),

vi(x,t) = R Y(x,t) G, (x, 1) D J(x, t).
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» Assumption: For all (x, t) € O, there exists a constant
A > 0 such that

Y (x, )X (x, t)=AGu(x, t)R; Y (x, 1) G/ (x, t)
—AG,(x, )R 1(x, 1)G, (x, t).
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Path Integral Formulation

» Logarithmic transformation of the value function:
J(x,t) = —~Alog (£ (x, 1))

» Assumption: For all (x, t) € O, there exists a constant
A > 0 such that

Y (x, )X (x, t)=AGu(x, t)R; Y (x, 1) G/ (x, t)
—\G,(x, )R, (x, t) G (x, t).
Partition of the system dynamics:

o] =i 3] Lo o] 0

+ [GSQ)(()XJ ] v(x, t)dt + [2(2)( ]
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Path Integral Formulation

» Linear PDE in £ with Dirichlet boundary condition

Oee=YE—FTa& — ITr (TXT02%), VY(x,t)€Q,
lim )g(x,t):exp(_@» Y(y,s)€0Q.

(x,t)—=(y,s
(x,t)eQ

» The solution of the above PDE exists and is unique®.
» The solution admits the Feynman-Kac representation.

" Friedman, "Stochastic differential equations and applications, vol. 1."
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Feynman-Kac Represenation

» Uncontrolled state dynamics:
dx(t)=f(x(t),t)dt+X(x(t),t)dw(t)
> Lettr = inf{t > to: (X(¢),t) ¢ Q}

» The solution of the linearized PDE (path integral form):

€0 t) = Buc exp (55

where

5() = 0 (&(0) + [ V(&) o)k



- The University of Texas at Austin

Cockrell School of Engineering

Path Integral Formulation

Theorem: A saddle-point solution exists, is unique, and is given
by
Ey[exp(—1S (7)) Z@(x, t) dw]

u*(x, t)dt=Gu(x, t) v [exp(=3S ()] |

where

-1
T T T
G,=R;1GP? <G§2)R;1c;£2) - 6PR 6P >
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Path Integral Formulation

Theorem: A saddle-point solution exists, is unique, and is given
by
Ey[exp(—1S (7)) Z@(x, t) dw]

Ex ¢ [exp(**s( ))} 7

u*(x, t)dt=G,(x, t)

where
-1

T T T
Gy—R-1G? <G§2) RGO PR 16D >

and
Ey[exp(—1S (7)) ZP(x, t) dw]

vi(x, t)dt=G, (x, t) Ex: [exp(—3S5(7))] |

where

gv=—R—1652)T<G52’R‘1G52’T— G£2)R‘1G52)T>
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Disturbance Attenuation

» Unicycle model:

dpx Px s cosf
dpy| _ , |Py ssinf
ds | = k < dt + 0 dt
dé 0 0
0 0
00 a Aa o 0
+ 10 [w] dt+ [Aw] di+ [0 I/:| d ’
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Disturbance Attenuation

» Unicycle model:

dpx Px s cosf

dpy| _ , |Py ssinf

ds | = k h dt + 0 dt

dé 0 0
00
00 a Aa o 0

+20 []dt+[Aw]dt+[o ]d ,

0 1|\~ ~—~~—

» Problem to solve:

tr 1
min max IEXO,tO[¢(x(t,c))+/ <2uTu zVTv—i-V)dt]
v t

u
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Disturbance Attenuation

» Assumption: A > 0 such that

1
AMi1-=) =1
( 72>

» The problem admits a unique saddle-point solution if v > 1

0.1 0.1
0 0
0.1 -0.1
<02 £-02
03 0.3
-0.4 -0.4
08504030201 0 o4 0504080201 0 o4
Pz Pz
12 =2P3 =09 ~*=7 P =0.64



The University of Texas at Austin

Cockrell School of Engineering

Disturbance Attenuation

» MC trajectories: 10%, Step size: 0.01

-0.5 -0.5
-0.5-04-03-02-0.1 0 01 -0.5-04-03-02-0.1 0 01
Yz Pz
Agent is aware of the Agent is not aware of

adversary, Pg8 = 0.23 the adversary, P2 = 0.65

ail ail
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» Pursuer and evader models:

dpt = u.dt + oEdwE,  dpf = vedt + o dw?,

dpl = uydt+ofdwl,  dpl = v dt +oldw],

> Interms of relative position p, = p£ — pZ, p, =pf —pl:

dx = [d”x} - [”X] dt — ["X] dt + [C’X O] dw
dpy uy vy 0 oy

0x = V(0% + (o) 0y = \[(oy)? + (0))?
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Pursuit-Evasion Game

» Pursuer and evader models:
dpt = u.dt + oEdwt,  dpf = v dt + oFdwl,

dpl = uydt+ofdwl,  dpl = v dt +oldw],

> Interms of relative position p, = p£ — pZ, p, =pf —pl:

o= o] = e ae= [ aes [ 5 o o
ox = \/(0E)2+ (6F)2 0y = /(0E)? + (o])?

» Origin coincides with the pursuer’s position and safe set
Xs = {xeR?:|x|| > p}
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» Problem to solve:

. ty, 1 - rv2 -
min max Eso 0|0 (x(t6))+ Suu——v v+V)dt|.

u to
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Pursuit Evasion Game

» Problem to solve:
I’V2

t, 1
min max E,; ¢ [(b (x(tf))+/ <2uTu—2vTv+ \/> dt] .

u to

» Assumption: A > 0 such that

1

» The problem admits a unique saddle-point solution if r, >1
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{7
54

) 2/
~ [istart

—E wins

®2(t;) when E wins

—P wins

@ (t;) when P wins

-0.25 0 0.25 0.5 0.75
Pz

Figure: The red disc of radius p = 0.1, centered at the origin
represents that the pursuer is within the distance p of the evader.
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Figure: Failure probabilities of the agent (i.e., evader) as a function of
r,, when the players follow the saddle-point policies (u*, v*).
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Conclusion

» Presented an HJI-PDE-based solution approach for a
risk-minimizing two-player zero-sum stochastic differential
game (SDG). Each player tries to balance the trade-off
between the probability of failure and the control cost.

» Developed a path-integral framework and established the
existence and uniqueness of saddle point solution under
linearized HJI PDE.

» The presented approach allows the game to be solved
online without the need for any offline training or
precomputations.

» Future work:

- chance-constrained stochastic games in which each player
would aim to satisfy a hard bound on its failure probability.
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