

IEEE Conference on Decision and Control 2023

Risk-Minimizing Two-Player Zero-Sum Stochastic Differential Game via Path Integral Control

Apurva Patil Yujing Zhou David Fridovich-Keil Takashi Tanaka

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Conclusion

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

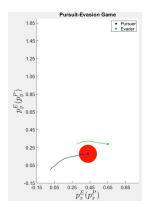
Simualtions

Conclusion

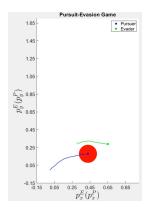
Risk-minimizing two-player zero-sum stochastic differential game: each player aims to minimize its probability of failure and the control cost.

- Risk-minimizing two-player zero-sum stochastic differential game: each player aims to minimize its probability of failure and the control cost.
- Failure occurs when the state of the game enters into predefined undesirable domains

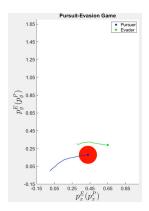
- Risk-minimizing two-player zero-sum stochastic differential game: each player aims to minimize its probability of failure and the control cost.
- Failure occurs when the state of the game enters into predefined undesirable domains



- Risk-minimizing two-player zero-sum stochastic differential game: each player aims to minimize its probability of failure and the control cost.
- Failure occurs when the state of the game enters into predefined undesirable domains
- We solve continuous-time, nonlinear two-player zero-sum stochastic differential game online using path integral control



- Risk-minimizing two-player zero-sum stochastic differential game: each player aims to minimize its probability of failure and the control cost.
- Failure occurs when the state of the game enters into predefined undesirable domains
- We solve continuous-time, nonlinear two-player zero-sum stochastic differential game online using path integral control
- Existence and uniqueness of the saddle-point of the game.



Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Conclusion

Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HII PDEs

Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011]

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HII PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011], deep RL [Prajapat et al. 2021]

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011], deep RL [Prajapat et al. 2021], integral RL [Liu et al. 2020]

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011], deep RL [Prajapat et al. 2021], integral RL [Liu et al. 2020], Bayesian inverse RL [Lin et al. 2017]

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HII PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011], deep RL [Prajapat et al. 2021], integral RL [Liu et al. 2020], Bayesian inverse RL [Lin et al. 2017] Challenges in learning-based approaches:
 - Rigorous theoretical guarantees on convergence and optimality
 - Offline training required

- Hamilton-Jacobi-Isaacs partial differential equation [Falcone et al. 2006]: grid-based approaches to solve the HJI PDEs; suffer from the curse of dimensionality, precomputation required
- RL-based approaches: adaptive dynamic programming [Vrabie et al. 2011], deep RL [Prajapat et al. 2021], integral RL [Liu et al. 2020], Bayesian inverse RL [Lin et al. 2017] Challenges in learning-based approaches:
 - Rigorous theoretical guarantees on convergence and optimality
 - Offline training required
- Above approaches do not explicitly take into account the players' failure probabilities

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

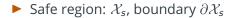
Conclusion

System: Itô stochastic differential equation (SDE)

$$d\mathbf{x}(t) = f(\mathbf{x}(t), t) dt + G_u(\mathbf{x}(t), t) u(\mathbf{x}(t), t) dt + G_v(\mathbf{x}(t), t) v(\mathbf{x}(t), t) dt + \Sigma(\mathbf{x}(t), t) d\mathbf{w}(t)$$

System: Itô stochastic differential equation (SDE)

$$d\mathbf{x}(t) = f(\mathbf{x}(t), t) dt + G_u(\mathbf{x}(t), t) u(\mathbf{x}(t), t) dt + G_v(\mathbf{x}(t), t) v(\mathbf{x}(t), t) dt + \Sigma(\mathbf{x}(t), t) d\mathbf{w}(t)$$



System: Itô stochastic differential equation (SDE)

$$d\mathbf{x}(t) = f(\mathbf{x}(t), t) dt + G_u(\mathbf{x}(t), t) u(\mathbf{x}(t), t) dt + G_v(\mathbf{x}(t), t) v(\mathbf{x}(t), t) dt + \Sigma(\mathbf{x}(t), t) d\mathbf{w}(t)$$

- Safe region: \mathcal{X}_s , boundary $\partial \mathcal{X}_s$
- Agent's probability of failure:

$$P_{\text{fail}}^{\text{ag}} \coloneqq P_{x_0, t_0} \left(\bigvee_{t \in (t_0, T]} \boldsymbol{x}(t) \notin \mathcal{X}_s \right)$$

• Adversary's probability of failure $P_{\text{fail}}^{\text{ad}} \coloneqq 1 - P_{\text{fail}}^{\text{ag}}$

▶ Define a set $Q = X_s \times [t_0, T)$, Boundary $\partial Q = (\partial X_s \times [t_0, T]) \cup (X_s \times \{T\})$

- ▶ Define a set $Q = X_s \times [t_0, T)$, Boundary $\partial Q = (\partial X_s \times [t_0, T]) \cup (X_s \times \{T\})$
- ► Terminal time of the game: $t_f := \inf\{t > t_0 : (\mathbf{x}(t), t) \notin Q\}$

- ▶ Define a set $Q = X_s \times [t_0, T)$, Boundary $\partial Q = (\partial X_s \times [t_0, T]) \cup (X_s \times \{T\})$
- ▶ Terminal time of the game: $t_f := \inf\{t > t_0 : (\mathbf{x}(t), t) \notin Q\}$

Agent's failure probability P^{ag}_{fail}:

$$P_{\mathbf{x}_0,t_0}\left(\bigvee_{t\in(t_0,T]} \mathbf{x}(t)\notin \mathcal{X}_s\right) = \mathbb{E}_{\mathbf{x}_0,t_0}\left[\mathbb{1}_{\mathbf{x}(\mathbf{t}_f)\in\partial\mathcal{X}_s}\right].$$

- ▶ Define a set $Q = X_s \times [t_0, T)$, Boundary $\partial Q = (\partial X_s \times [t_0, T]) \cup (X_s \times \{T\})$
- ▶ Terminal time of the game: $t_f := \inf\{t > t_0 : (\mathbf{x}(t), t) \notin Q\}$

• Agent's failure probability $P_{\text{fail}}^{\text{ag}}$:

$$P_{\mathbf{x}_0,t_0}\left(\bigvee_{t\in(t_0,T]} \mathbf{x}(t)\notin \mathcal{X}_s\right) = \mathbb{E}_{\mathbf{x}_0,t_0}\left[\mathbb{1}_{\mathbf{x}(t_f)\in\partial\mathcal{X}_s}\right].$$

Risk-minimizing cost function:

$$C(\mathbf{x}_{0}, t_{0}; u, v) := \eta \mathbb{E}_{\mathbf{x}_{0}, t_{0}} \left[\mathbb{1}_{\mathbf{x}(t_{f}) \in \partial \mathcal{X}_{s}} \right]$$

+ $\mathbb{E}_{\mathbf{x}_{0}, t_{0}} \left[\psi(\mathbf{x}(t_{f})) \cdot \mathbb{1}_{\mathbf{x}(t_{f}) \in \mathcal{X}_{s}} + \int_{t_{0}}^{t_{f}} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{v}(t), t) dt \right].$

• Define: $\phi(x) := \psi(x) \cdot \mathbb{1}_{x \in \mathcal{X}_s} + \eta \cdot \mathbb{1}_{x \in \partial \mathcal{X}_s}$

Running cost:

$$L(\mathbf{x}, \mathbf{u}, \mathbf{v}, t) = V(\mathbf{x}, t) + \frac{1}{2} \mathbf{u}^{T} R_{u}(\mathbf{x}, t) \mathbf{u} - \frac{1}{2} \mathbf{v}^{T} R_{v}(\mathbf{x}, t) \mathbf{v}$$

Risk-minimizing zero-sum SDG

$$\min_{u} \max_{v} \mathbb{E}_{\mathbf{x}_{0},t_{0}} \left[\phi\left(\mathbf{x}(\mathbf{t}_{f})\right) + \int_{t_{0}}^{t_{f}} \left(\frac{1}{2}\mathbf{u}^{\mathsf{T}}R_{u}\mathbf{u} - \frac{1}{2}\mathbf{v}^{\mathsf{T}}R_{v}\mathbf{v} + V\right) dt \right]$$

s.t. $d\mathbf{x} = fdt + G_{u}udt + G_{v}vdt + \Sigma d\mathbf{w},$
 $\mathbf{x}(t_{0}) = x_{0}.$

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Conclusion

HJI PDE with Dirichlet Boundary Condition

Cost-to-go function:

(

$$\begin{split} \mathcal{L}(x,t;u,v) = & \mathbb{E}_{x,t} \left[\phi \left(\boldsymbol{x}(\boldsymbol{t}_{f}) \right) \right] \\ & + \mathbb{E}_{x,t} \left[\int_{t}^{\boldsymbol{t}_{f}} \left(\frac{1}{2} \boldsymbol{u}^{\top} R_{u} \boldsymbol{u} - \frac{1}{2} \boldsymbol{v}^{\top} R_{v} \boldsymbol{v} + V \right) dt \right]. \end{split}$$

HII PDE with Dirichlet Boundary Condition

Cost-to-go function:

$$\begin{split} \mathcal{L}(x,t;u,v) = & \mathbb{E}_{x,t} \left[\phi \left(\boldsymbol{x}(\boldsymbol{t}_f) \right) \right] \\ & + \mathbb{E}_{x,t} \left[\int_t^{\boldsymbol{t}_f} \left(\frac{1}{2} \boldsymbol{u}^\top R_u \boldsymbol{u} - \frac{1}{2} \boldsymbol{v}^\top R_v \boldsymbol{v} + V \right) dt \right]. \end{split}$$

 \blacktriangleright (u^* , v^*) constitutes a saddle-point solution if

$$C(x,t;u^*,v) \leq C^* \coloneqq C(x,t;u^*,v^*) \leq C(x,t;u,v^*).$$

where the value of the game

$$C^* = \min_{u} \max_{v} C(x, t; u, v) = \max_{v} \min_{u} C(x, t; u, v).$$

HJI PDE with Dirichlet Boundary Condition

Theorem: Suppose there exists a function $J : \overline{Q} \to \mathbb{R}$ such that

- (a) J(x, t) is continuously differentiable in t and twice continuously differentiable in x in the domain Q;
- (b) J(x, t) solves the following stochastic Hamilton-Jacobi-Isaacs (HJI) PDE:

$$\begin{cases} -\partial_t J = V + f^\top \partial_x J + \frac{1}{2} \operatorname{Tr} \left(\Sigma \Sigma^\top \partial_x^2 J \right) & \forall (x, t) \in \mathcal{Q}, \\ + \frac{1}{2} (\partial_x J)^\top \left(G_v R_v^{-1} G_v^\top - G_u R_u^{-1} G_u^\top \right) \partial_x J, & \forall (x, t) \in \mathcal{Q}, \\ \lim_{\substack{(x,t) \to (y,s) \\ (x,t) \in \mathcal{Q}}} J(x, t) = \phi(y), & \forall (y, s) \in \partial \mathcal{Q}. \end{cases}$$
(1)

4

~

HII PDE with Dirichlet Boundary Condition

... Then, the following statements hold:

(i) J(x, t) is the value of the game, i.e.

$$J(x,t) = \min_{u} \max_{v} C(x,t; u, v)$$

= $\max_{v} \min_{u} C(x,t; u, v), \quad \forall (x,t) \in \overline{Q}.$

HJI PDE with Dirichlet Boundary Condition

...Then, the following statements hold:

(i) J(x, t) is the value of the game, i.e.

$$J(x, t) = \min_{u} \max_{v} C(x, t; u, v)$$

=
$$\max_{v} \min_{u} C(x, t; u, v), \quad \forall (x, t) \in \overline{Q}.$$

(ii) The optimal solution is given by

$$u^{*}(x,t) = -R_{u}^{-1}(x,t) G_{u}^{\top}(x,t) \partial_{x} J(x,t),$$
$$v^{*}(x,t) = R_{v}^{-1}(x,t) G_{v}^{\top}(x,t) \partial_{x} J(x,t).$$

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Conclusion

Path Integral Formulation

Logarithmic transformation of the value function:

$$J(x,t) = -\lambda \log \left(\xi \left(x,t\right)\right)$$

Path Integral Formulation

Logarithmic transformation of the value function:

$$J(x,t) = -\lambda \log \left(\xi \left(x,t\right)\right)$$

• **Assumption:** For all $(x, t) \in \overline{Q}$, there exists a constant $\lambda > 0$ such that $\Sigma(x, t)\Sigma^{\top}(x, t) = \lambda G_u(x, t)R_u^{-1}(x, t)G_u^{\top}(x, t)$ $-\lambda G_u(x, t)R_u^{-1}(x, t)G_u^{\top}(x, t).$

Logarithmic transformation of the value function:

$$J(x,t) = -\lambda \log \left(\xi \left(x,t\right)\right)$$

• **Assumption:** For all $(x, t) \in \overline{Q}$, there exists a constant $\lambda > 0$ such that

$$\Sigma(x,t)\Sigma^{\top}(x,t) = \lambda G_u(x,t)R_u^{-1}(x,t)G_u^{\top}(x,t) - \lambda G_v(x,t)R_v^{-1}(x,t)G_v^{\top}(x,t).$$

Partition of the system dynamics:

$$\begin{bmatrix} d\mathbf{x}^{(1)} \\ d\mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} f^{(1)}(\mathbf{x}, t) \\ f^{(2)}(\mathbf{x}, t) \end{bmatrix} dt + \begin{bmatrix} 0 \\ G_{u}^{(2)}(\mathbf{x}, t) \end{bmatrix} u(\mathbf{x}, t) dt \\ + \begin{bmatrix} 0 \\ G_{v}^{(2)}(\mathbf{x}, t) \end{bmatrix} v(\mathbf{x}, t) dt + \begin{bmatrix} 0 \\ \Sigma^{(2)}(\mathbf{x}, t) \end{bmatrix} d\mathbf{w}$$

• Linear PDE in ξ with Dirichlet boundary condition

$$\begin{cases} \partial_t \xi = \frac{V\xi}{\lambda} - f^\top \partial_x \xi - \frac{1}{2} \operatorname{Tr} \left(\Sigma \Sigma^\top \partial_x^2 \xi \right), & \forall (x, t) \in \mathcal{Q}, \\ \lim_{\substack{(x,t) \to (y,s) \\ (x,t) \in \mathcal{Q}}} \xi(x, t) = \exp\left(-\frac{\phi(y)}{\lambda}\right), & \forall (y, s) \in \partial \mathcal{Q}. \end{cases}$$

¹ Friedman, "Stochastic differential equations and applications, vol. 1."

• Linear PDE in ξ with Dirichlet boundary condition

$$\begin{cases} \partial_t \xi = \frac{V\xi}{\lambda} - f^\top \partial_x \xi - \frac{1}{2} \operatorname{Tr} \left(\Sigma \Sigma^\top \partial_x^2 \xi \right), & \forall (x, t) \in \mathcal{Q}, \\ \lim_{\substack{(x,t) \to (y,s) \\ (x,t) \in \mathcal{Q}}} \xi(x, t) = \exp\left(-\frac{\phi(y)}{\lambda}\right), & \forall (y, s) \in \partial \mathcal{Q}. \end{cases}$$

▶ The solution of the above PDE exists and is unique¹.

¹ Friedman, "Stochastic differential equations and applications, vol. 1."

• Linear PDE in ξ with Dirichlet boundary condition

$$\begin{cases} \partial_t \xi = \frac{V\xi}{\lambda} - f^\top \partial_x \xi - \frac{1}{2} \operatorname{Tr} \left(\Sigma \Sigma^\top \partial_x^2 \xi \right), & \forall (x, t) \in \mathcal{Q}, \\ \lim_{\substack{(x,t) \to (y,s) \\ (x,t) \in \mathcal{Q}}} \xi(x, t) = \exp\left(-\frac{\phi(y)}{\lambda}\right), & \forall (y, s) \in \partial \mathcal{Q}. \end{cases}$$

- The solution of the above PDE exists and is unique¹.
- ► The solution admits the Feynman-Kac representation.

¹ Friedman, "Stochastic differential equations and applications, vol. 1."

Feynman-Kac Represenation

Uncontrolled state dynamics:

$$d\hat{\boldsymbol{x}}(t) = f(\hat{\boldsymbol{x}}(t),t)dt + \Sigma(\hat{\boldsymbol{x}}(t),t)d\boldsymbol{w}(t)$$

• Let
$$\hat{\boldsymbol{t}}_f := \inf\{t > t_0 : (\hat{\boldsymbol{x}}(t), t) \notin \mathcal{Q}\}$$

The solution of the linearized PDE (path integral form):

$$\xi(x, t) = \mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\right]$$

where

$$S(\tau) = \phi\left(\hat{\boldsymbol{x}}(\hat{\boldsymbol{t}}_f)\right) + \int_t^{\hat{\boldsymbol{t}}_f} V\left(\hat{\boldsymbol{x}}(t), t\right) dt.$$

Theorem: A saddle-point solution exists, is unique, and is given by

$$u^{*}(x,t)dt = \mathcal{G}_{u}(x,t)\frac{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\Sigma^{(2)}(x,t)\,d\boldsymbol{w}\right]}{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\right]},$$

where

$$\mathcal{G}_{u} = R_{u}^{-1} G_{u}^{(2)}^{\top} \left(G_{u}^{(2)} R_{u}^{-1} G_{u}^{(2)}^{\top} - G_{v}^{(2)} R_{v}^{-1} G_{v}^{(2)}^{\top} \right)^{-1}$$

Theorem: A saddle-point solution exists, is unique, and is given by

$$u^{*}(x,t)dt = \mathcal{G}_{u}(x,t)\frac{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\Sigma^{(2)}(x,t)\,d\boldsymbol{w}\right]}{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\right]},$$

where

$$\mathcal{G}_{u} = R_{u}^{-1} G_{u}^{(2)}^{\top} \left(G_{u}^{(2)} R_{u}^{-1} G_{u}^{(2)}^{\top} - G_{v}^{(2)} R_{v}^{-1} G_{v}^{(2)}^{\top} \right)^{-1}$$

and

$$v^{*}(x,t)dt = \mathcal{G}_{v}(x,t)\frac{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\Sigma^{(2)}(x,t)\,d\boldsymbol{w}\right]}{\mathbb{E}_{x,t}\left[\exp\left(-\frac{1}{\lambda}S(\tau)\right)\right]},$$

where

$$\mathcal{G}_{v} = -R_{v}^{-1}G_{v}^{(2)\top} \left(G_{u}^{(2)}R_{u}^{-1}G_{u}^{(2)\top} - G_{v}^{(2)}R_{v}^{-1}G_{v}^{(2)\top}\right)^{-1}.$$

19/29

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Unicycle model:

$$\begin{bmatrix} d\boldsymbol{p}_{x} \\ d\boldsymbol{p}_{y} \\ d\boldsymbol{s} \\ d\boldsymbol{\theta} \end{bmatrix} = -k \begin{bmatrix} \boldsymbol{p}_{x} \\ \boldsymbol{p}_{y} \\ \boldsymbol{s} \\ \boldsymbol{\theta} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{s}\cos\boldsymbol{\theta} \\ \boldsymbol{s}\sin\boldsymbol{\theta} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix} dt \\ + \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \left(\underbrace{\begin{bmatrix} \boldsymbol{s} \\ \boldsymbol{\omega} \end{bmatrix}}_{\boldsymbol{u}} dt + \underbrace{\begin{bmatrix} \Delta \boldsymbol{a} \\ \Delta \boldsymbol{\omega} \end{bmatrix}}_{\boldsymbol{v}} dt + \begin{bmatrix} \boldsymbol{\sigma} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\nu} \end{bmatrix} d\boldsymbol{w} \right),$$

Unicycle model:

$$\begin{bmatrix} d\boldsymbol{p}_{x} \\ d\boldsymbol{p}_{y} \\ d\boldsymbol{s} \\ d\boldsymbol{\theta} \end{bmatrix} = -k \begin{bmatrix} \boldsymbol{p}_{x} \\ \boldsymbol{p}_{y} \\ \boldsymbol{s} \\ \boldsymbol{\theta} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{s}\cos\boldsymbol{\theta} \\ \boldsymbol{s}\sin\boldsymbol{\theta} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix} dt \\ + \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \boldsymbol{s} \\ \boldsymbol{s} \\ \boldsymbol{0} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{\Delta} & \boldsymbol{0} \\ \boldsymbol{\Delta} & \boldsymbol{\omega} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{\sigma} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\nu} \end{bmatrix} d\boldsymbol{w} \end{pmatrix},$$

Problem to solve:

$$\min_{\boldsymbol{u}} \max_{\boldsymbol{v}} \mathbb{E}_{\mathbf{x}_{0},t_{0}} \left[\phi\left(\boldsymbol{x}(\boldsymbol{t}_{f})\right) + \int_{t_{0}}^{t_{f}} \left(\frac{1}{2}\boldsymbol{u}^{\mathsf{T}}\boldsymbol{u} - \frac{\gamma^{2}}{2}\boldsymbol{v}^{\mathsf{T}}\boldsymbol{v} + V\right) dt \right]$$

• Assumption: $\lambda > 0$ such that

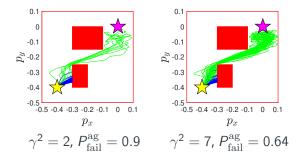
$$\lambda\left(1-\frac{1}{\gamma^2}\right) = 1.$$

▶ The problem admits a unique saddle-point solution if $\gamma > 1$

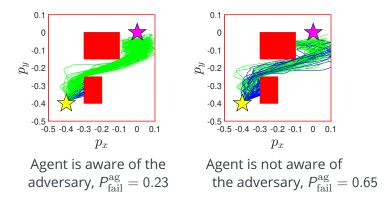
• Assumption: $\lambda > 0$ such that

$$\lambda\left(1-\frac{1}{\gamma^2}\right) = 1.$$

▶ The problem admits a unique saddle-point solution if $\gamma > 1$



MC trajectories: 10⁴, Step size: 0.01



Pursuer and evader models:

$$d\boldsymbol{p}_{x}^{E} = u_{x}dt + \sigma_{x}^{E}d\boldsymbol{w}_{x}^{E}, \qquad d\boldsymbol{p}_{x}^{P} = v_{x}dt + \sigma_{x}^{P}d\boldsymbol{w}_{x}^{P}, \\ d\boldsymbol{p}_{y}^{E} = u_{y}dt + \sigma_{y}^{E}d\boldsymbol{w}_{y}^{E}, \qquad d\boldsymbol{p}_{y}^{P} = v_{y}dt + \sigma_{y}^{P}d\boldsymbol{w}_{y}^{P},$$

Pursuer and evader models:

$$d\boldsymbol{p}_{x}^{E} = u_{x}dt + \sigma_{x}^{E}d\boldsymbol{w}_{x}^{E}, \qquad d\boldsymbol{p}_{x}^{P} = v_{x}dt + \sigma_{x}^{P}d\boldsymbol{w}_{x}^{P}, \\ d\boldsymbol{p}_{y}^{E} = u_{y}dt + \sigma_{y}^{E}d\boldsymbol{w}_{y}^{E}, \qquad d\boldsymbol{p}_{y}^{P} = v_{y}dt + \sigma_{y}^{P}d\boldsymbol{w}_{y}^{P},$$

► In terms of relative position $\boldsymbol{p}_x = \boldsymbol{p}_x^E - \boldsymbol{p}_x^P$, $\boldsymbol{p}_y = \boldsymbol{p}_y^E - \boldsymbol{p}_y^P$:

$$d\boldsymbol{x} = \begin{bmatrix} d\boldsymbol{p}_{x} \\ d\boldsymbol{p}_{y} \end{bmatrix} = \begin{bmatrix} u_{x} \\ u_{y} \end{bmatrix} dt - \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} dt + \begin{bmatrix} \sigma_{x} & 0 \\ 0 & \sigma_{y} \end{bmatrix} d\boldsymbol{w}$$
$$\sigma_{x} = \sqrt{(\sigma_{x}^{E})^{2} + (\sigma_{x}^{P})^{2}}, \sigma_{y} = \sqrt{(\sigma_{y}^{E})^{2} + (\sigma_{y}^{P})^{2}}$$

Pursuer and evader models:

$$d\boldsymbol{p}_{x}^{E} = u_{x}dt + \sigma_{x}^{E}d\boldsymbol{w}_{x}^{E}, \qquad d\boldsymbol{p}_{x}^{P} = v_{x}dt + \sigma_{x}^{P}d\boldsymbol{w}_{x}^{P}, \\ d\boldsymbol{p}_{y}^{E} = u_{y}dt + \sigma_{y}^{E}d\boldsymbol{w}_{y}^{E}, \qquad d\boldsymbol{p}_{y}^{P} = v_{y}dt + \sigma_{y}^{P}d\boldsymbol{w}_{y}^{P},$$

▶ In terms of relative position $\boldsymbol{p}_x = \boldsymbol{p}_x^E - \boldsymbol{p}_x^P$, $\boldsymbol{p}_y = \boldsymbol{p}_y^E - \boldsymbol{p}_y^P$:

$$d\boldsymbol{x} = \begin{bmatrix} d\boldsymbol{p}_{X} \\ d\boldsymbol{p}_{y} \end{bmatrix} = \begin{bmatrix} u_{X} \\ u_{y} \end{bmatrix} dt - \begin{bmatrix} v_{X} \\ v_{y} \end{bmatrix} dt + \begin{bmatrix} \sigma_{X} & 0 \\ 0 & \sigma_{y} \end{bmatrix} d\boldsymbol{w}$$

$$\sigma_x = \sqrt{(\sigma_x^E)^2 + (\sigma_x^P)^2}, \, \sigma_y = \sqrt{(\sigma_y^E)^2 + (\sigma_y^P)^2}$$

• Origin coincides with the pursuer's position and safe set $\mathcal{X}_s := \{x \in \mathbb{R}^2 : ||x|| > \rho\}$

Problem to solve:

$$\min_{\boldsymbol{u}} \max_{\boldsymbol{v}} \mathbb{E}_{\boldsymbol{x}_0, t_0} \left[\phi\left(\boldsymbol{x}(\boldsymbol{t}_f)\right) + \int_{t_0}^{t_f} \left(\frac{1}{2}\boldsymbol{u}^T\boldsymbol{u} - \frac{r_v^2}{2}\boldsymbol{v}^T\boldsymbol{v} + V\right) dt \right].$$

Problem to solve:

$$\min_{\boldsymbol{u}} \max_{\boldsymbol{v}} \mathbb{E}_{\mathbf{x}_{0},t_{0}} \left[\phi\left(\boldsymbol{x}(\boldsymbol{t}_{f})\right) + \int_{t_{0}}^{t_{f}} \left(\frac{1}{2}\boldsymbol{u}^{T}\boldsymbol{u} - \frac{r_{v}^{2}}{2}\boldsymbol{v}^{T}\boldsymbol{v} + \boldsymbol{V}\right) dt \right].$$

• Assumption: $\lambda > 0$ such that

$$\lambda\left(1-\frac{1}{{r_v}^2}\right)=1.$$

• The problem admits a unique saddle-point solution if $r_v > 1$

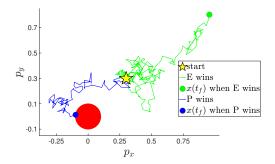


Figure: The red disc of radius $\rho = 0.1$, centered at the origin represents that the pursuer is within the distance ρ of the evader.

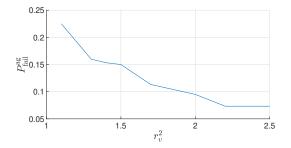


Figure: Failure probabilities of the agent (i.e., evader) as a function of r_{v} , when the players follow the saddle-point policies (u^* , v^*).

Outline

Background

Existing Approaches

Problem Formulation

HJI PDE with Dirichlet Boundary Condition

Path Integral Formulation

Simualtions

Presented an HJI-PDE-based solution approach for a risk-minimizing two-player zero-sum stochastic differential game (SDG). Each player tries to balance the trade-off between the probability of failure and the control cost.

- Presented an HJI-PDE-based solution approach for a risk-minimizing two-player zero-sum stochastic differential game (SDG). Each player tries to balance the trade-off between the probability of failure and the control cost.
- Developed a path-integral framework and established the existence and uniqueness of saddle point solution under linearized HJI PDE.

- Presented an HJI-PDE-based solution approach for a risk-minimizing two-player zero-sum stochastic differential game (SDG). Each player tries to balance the trade-off between the probability of failure and the control cost.
- Developed a path-integral framework and established the existence and uniqueness of saddle point solution under linearized HJI PDE.
- The presented approach allows the game to be solved online without the need for any offline training or precomputations.

- Presented an HJI-PDE-based solution approach for a risk-minimizing two-player zero-sum stochastic differential game (SDG). Each player tries to balance the trade-off between the probability of failure and the control cost.
- Developed a path-integral framework and established the existence and uniqueness of saddle point solution under linearized HJI PDE.
- The presented approach allows the game to be solved online without the need for any offline training or precomputations.
- Future work:
 - chance-constrained stochastic games in which each player would aim to satisfy a hard bound on its failure probability.