
Collision Checking for Path-Planning in
Stochastic Environment

1 Problem formulation

Let C1 and C2 be two nodes in an n dimensional configuration space χ. The
covariances at the nodes are P1 and P2 respectively. Let χobs be the obstacle
region. If an obstacle lies within the convex set as shown in figure 1 then
the robot could collide with it while traveling from C1 to C2. The convex set
shown in figure 1 can be formulated as follows:

(y − Cz)
TP−1

z (y − Cz) ≤ 1 (1)

where

y ∈ Rn

z ∈ R
0 ≤ z ≤ 1

Cz = (1− z)C1 + zC2

Pz = (1− z)P1 + zP2

Using Schur complement, (1) can be written as[
1 (y − Cz)

T

y − Cz Pz

]
≥ 0 (2)

The obstacle region is given by

Ayobs ≤ b

yobs ∈ χobs

A ∈ Rm×n

b ∈ Rm

(3)

1



C1

C2

P2
P1 Obstacle

Convex Set

Figure 1: The convex set between two nodes

The collision checking problem can be formulated as a problem of determining
feasibility of a system of inequalities as follows:[

−1 (1− z)CT
1 + zCT

2 − yT
(1− z)C1 + zC2 − y −(1− z)P1 − zP2

]
≤ 0

Ay − b ≤ 0

− z ≤ 0

z − 1 ≤ 0

(4)

The first inequality is a generalized inequality w.r.t. the PSD cone. We can
formulate (4) as an optimization problem as follows:

miny,z 0

subject to

[
−1 (1− z)CT

1 + zCT
2 − yT

(1− z)C1 + zC2 − y −(1− z)P1 − zP2

]
≤ 0

Ay − b ≤ 0

− z ≤ 0

z − 1 ≤ 0

(5)

2



The problem has optimal value p∗ = 0 if constraints are feasible and p∗ =∞
if constraints are infeasible.

2 Method

We solve this problem using a particular interior-point algorithm, the Barrier
Method. Barrier method requires a strictly feasible initial point. Since we
don’t know such a point, the barrier algorithm is preceded by a preliminary
stage, called phase I, in which a strictly feasible point is computed (or the
constraints are found to be infeasible). The strictly feasible point found
during phase I is then used as the initial point for the barrier method [1].

2.1 Phase I formulation

We change (5) as follows:

miny,z,s s

subject to

[
−1 (1− z)CT

1 + zCT
2 − yT

(1− z)C1 + zC2 − y −(1− z)P1 − zP2

]
≤ s

Ay − b ≤ s

− z ≤ s

z − 1 ≤ s

(6)

The variable s ∈ R can be interpreted as a bound on the maximum infeasibil-
ity of the inequalities. Our goal is to drive the maximum infeasibility below
zero. We can choose initial s = s0 such that (6) is always strictly feasible for
the initial points y0 and z0. We can therefore apply the barrier method to
solve (6). The algorithm checks the following 3 conditions:

1. If (y, z, s) is feasible for (6) with s < 0 then the system of inequali-
ties (4) is feasible and collision happens

2. If for a dual feasible point of (6), the dual objective function is posi-
tive then the dual of (4) is feasible. Hence from the theorem of alternatives,
(4) is infeasible and collision doesn’t happen

3



3. If the duality gap reduces below a certain threshold after some num-
ber of iterations then we stop the algorithm and assume on the safer side
that (4) is feasible and collision happens.

2.2 Barrier method

This method reformulates an inequality constrained problem as an equality
constrained problem, to which Newton’s method can be applied. The basic
idea is to rewrite the problem (6), making the inequality constraints implicit
in the objective function [1]. Let’s introduce a block diagonal matrix M

M = diag(M1,M2,M3,M4) (7)

where

M1 =

[
1 + s yT − (1− z)CT

1 − zCT
2

y − (1− z)C1 − zC2 (1− z)P1 + zP2 + sI

]
(8)

M2 = diag
i

(s− aiy + bi) (9)

M3 = s+ z (10)

M4 = s− z + 1 (11)

ai is the ith row of A and bi is the ith component of b. Let

x =

sy
z

 (12)

Next, we define the logarithmic barrier function for (6) as

φ(x) = −log detM (13)

Hence the approximate reformulation of problem (6) is

minx ts+ φ(x) (14)

where t > 0 is a parameter of the barrier method that sets the accuracy of
the approximation.

λ∗ =
1

t
∇(log detM) (15)

4



is the dual feasible for the problem (6). The Lagrangian

L(x, λ∗(t)) = s− λ∗(t)TM (16)

is minimized over x by x = x∗(t). The dual function g evaluated at (λ∗(t))
is therefore equal to

g(λ∗(t)) = s∗(t)− λ∗(t)TM∗(t)

= s∗(t)− (1/t)∇(log detM∗(t))TM∗(t)

= s∗(t)− (1/t)θ

(17)

where θ is the degree of log detM . Hence,

θ = (1 + n) +m+ 2 (18)

M∗(t) is M evaluated at x∗(t).
And in the last line, we use the fact that MT∇(log detM) = θ.
The duality gap is (1/t)θ. Hence, x∗(t) is no more than (1/t)θ-suboptimal.
x∗(t) converges to an optimal point as t→∞. On the other hand, when the
parameter t is large, the objective function in (14) is difficult to minimize by
Newton’s method, since its Hessian varies rapidly near the boundary of the
feasible set. This problem can be circumvented by solving a sequence of prob-
lems of the form (14), increasing the parameter t (and therefore the accuracy
of the approximation) at each step, and starting each Newton minimization
at the solution of the problem for the previous value of t. We increase t until
t ≥ θ/ε, where ε is a specified accuracy.

2.3 Newton’s method

Now that we have converted the original problem (5) to an unconstrained
optimization problem (14) we solve this problem using the Newton’s method.
Let

f(x) := ts+ φ(x) (19)

5



Let’s find the second-order approximation of f(x) at x. Let x be a small
perturbation at x and M be the corresponding perturbation at M .

φ(x+ x) = −log det(M +M)

= −log det(M
1
2 (I +M− 1

2MM− 1
2 )M

1
2 )

= −log detM − log det (I +M− 1
2MM− 1

2 )

= −log detM −
∑
i

log(1 + λi)

(20)

where λi is the ith eigenvalue of M− 1
2MM− 1

2 . Using the second-order ap-
proximation in the expression above we get

φ(x+ x) ≈ −log detM −
∑
i

(λi −
1

2
λ2i )

= −log detM − Tr(M− 1
2MM− 1

2 ) +
1

2
Tr((M− 1

2MM− 1
2 )(M− 1

2MM− 1
2 ))

= −log detM − Tr(M−1M) +
1

2
Tr(M−1MM−1M)

(21)

Hence,

f(x+ x) ≈ f(x) + ts− Tr(M−1M) +
1

2
Tr(M−1MM−1M)

:= F (x)
(22)

Newton step x is the unique minimizer of the quadratic function F(x). Let
∆x be a small perturbation at x. Using the first-order approximation in the
expression above we get

F (x+ ∆x) ≈ F (x) + t∆s− Tr(M−1∆M) + Tr(M−1MM−1∆M)

= t∆s+ Tr((M−1MM−1 −M−1)∆M)
(23)

Let E, Fi and G be matrix coefficients such that

M = sE +
∑
i

yiFi + zG (24)

6



Hence,

F (x+ ∆x) ≈ F (x) + [t+ Tr((M−1MM−1 −M−1)E)]∆s

+
∑
i

Tr((M−1MM−1 −M−1)Fi)∆yi

+ Tr((M−1MM−1 −M−1)G)∆z

(25)

To find the minimizer of F (x) we will make the first order coefficients in (23)
zero. Hence,

t+ Tr((M−1MM−1 −M−1)E) = 0 (26)

Tr((M−1MM−1 −M−1)Fi) = 0 ∀i (27)

Tr((M−1MM−1 −M−1)G) = 0 (28)

(24)-(26) can be written as (27)-(29)

sTr(M−1EM−1E) +
∑
j

yjTr(M
−1FjM

−1E)

+zTr(M−1GM−1E) + t− Tr(M−1E) = 0

(29)

sTr(M−1EM−1Fi) +
∑
j

yjTr(M
−1FjM

−1Fi)

+zTr(M−1GM−1Fi)− Tr(M−1Fi) = 0 ∀i
(30)

sTr(M−1EM−1G) +
∑
j

yjTr(M
−1FjM

−1G)

+zTr(M−1GM−1G) + t− Tr(M−1G) = 0

(31)

which can also be written as
Ãx = b̃ (32)

where

Ã =


Tr(M−1EM−1E) Tr(M−1F1M

−1E) · · · Tr(M−1FnM
−1E) Tr(M−1GM−1E)

Tr(M−1EM−1F1) Tr(M−1F1M
−1F1) · · · Tr(M−1FnM

−1F1) Tr(M−1GM−1F1)
...

...
...

...
Tr(M−1EM−1Fn) Tr(M−1F1M

−1Fn) · · · Tr(M−1FnM
−1Fn) Tr(M−1GM−1Fn)

Tr(M−1EM−1G) Tr(M−1F1M
−1G) · · · Tr(M−1FnM

−1G) Tr(M−1GM−1G)


(33)

7



b̃ =


Tr(M−1E)− t
T r(M−1F1)

...
Tr(M−1Fn)
Tr(M−1G)

 (34)

and the solution x is

x =


s
y1
...
yn
z

 (35)

8



3 Algorithm

Algorithm 1: Collision checking

given strictly feasible x, t > 0, µ > 1,
tolerances εin > 0, εout > 0, λ2 > 2εin, α ∈ (0, 0.5), β ∈ (0, 1)
while duality gap = θ/t < εout do

1. Centering step: minimize f(x) = ts− φ(x):
while λ2/2 ≤ εin do

(i) Compute the Newton step x using (30)
(ii) Line search:
r := 1
while f(x+ rx) > f(x) + αr∇fTx do

r := βr
end
(iii) Update x := x+ rx
(iv) if s < 0 then

Collision happens; stop the algorithm
end

end
2. Check the value of the dual objective function:
if s− (1/t)θ > 0 then

Collision doesn’t happen; stop the algorithm
end
3. Increase t: t := µt

end

Since we start our algorithm form a primal feasible point x, at each inner
step we get a primal feasible point. Hence we check if condition 1 in 2.1 is
satisfied inside the inner loop. However we get a dual feasible point only at
the end of each outer (centering) step. Hence we check if condition 2 in 2.1
is satisfied inside the outer loop after the centering step is completed.

4 Numerical Experiments

4.1 Accuracy

For testing the accuracy, we compared the results of our algorithm with
the off-the-shelf SDP solver sdpt3. We generated a bunch of random collision

9



checking problems similar to the one shown in figure 1. C1 and C2 are chosen
as random coordinates in the space (0, 1)2. P1 and P2 are chosen as random
positive-definite matrices. And the obstacle is a rectangle whose coordinates
are also chosen randomly. Out of a hundred thousand problems, the results of
only 2 cases did not match. This was because these 2 problems fall under the
condition 3 in 2.1. But since for this condition we assume that the collision
happens, the algorithm doesn’t run into the danger of collision.

4.2 Speed

We ran our algorithm and sdpt3 for solving a thousand randomly generated
collision checking problems. The CPU time required for our algorithm is
41.50 sec whereas for sdpt3 it is 157.33 sec. The SDP solvers require a
Matlab interface, YALMIP from which the solvers are called. This could be
one of the reasons for sdpt3 being almost 3.8 times slower than our algorithm.

References:

1. Stephen Boyd and Lieven Vandenberghe, “Convex Optimization”

10


