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Background

▶ End-to-end risks in stochastic robot
navigation

– Characterize safety of the planned
trajectories.

– Plan risk optimal trajectories.

▶ Continuous-time end-to-end risk

R = P

( ⋃
t∈[0,T ]

xxx sys(t) ∈ Xobs

)
.

▶ R is challenging to compute
– xxx sys(t) across [0,T ] are correlated.
– We derive two upper bounds using properties of
Brownian motion, and Boole and Hunter’s inequalities .
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Existing Approaches

▶ Monte Carlo methods 1

– Computationally expensive and cumbersome to embed in
planning algorithms.

▶ Discrete-time approximations 2

– R ≈ P

(
N⋃
i=0

xxx sys(ti ) ∈ Xobs

)
≤

N∑
i=0

P (xxx sys(ti ) ∈ Xobs).

– Sensitive to the chosen time discretization.
▶ Continuous-time methods

– PDE-based methods 3: closed-form solution not tractable.
– Reflection-principle-based method 4

1 (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)
2 (Patil and Tanaka 2021)
3 (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)
4 (Ariu et al. 2017)
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Problem Formulation
▶ Planned trajectory

– A finite sequences of positions {xplanj ∈ Xfree}j=0,1,...,N and
control inputs {vplan

j ∈ Rn}j=0,1,...,N−1.
– Let T = (0 = t0 < . . . < tN = T ) s.t. vplan

j ∆tj = xplanj+1 − xplanj .

▶ Robot dynamics
– Controlled Itô process

dxxx sys(t) = vvv sys(t)dt + R
1
2 dwww(t),

where vvv sys(t) = vplan
j ∀ t ∈ [tj , tj+1).

▶ Continuous-time end-to-end risk
– If Tj = [tj−1, tj ],

R = P

 ⋃
t∈[0,T ]

xxx sys(t) ∈ Xobs

 = P

 N⋃
j=1

⋃
t∈Tj

xxx sys(t)∈ Xobs

 .
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Risk in terms of 1-D Brownian Motions

 

 

R = P

 N⋃
j=1

⋃
t∈Tj

xxx sys(t)∈ Xobs


≤P

 N⋃
j=1

⋃
t∈Tj

aTj xxx(t) ≥ dj


where xxx(t) = xxx sys(t)− xplan(t).

www j(t) = aTj xxx(t) is a one-dimensional Brownian motion for
t ∈ [0,T ] that starts in the origin.

R ≤ P

 N⋃
j=1

max
t∈Tj

www j(t) ≥ dj

 .
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First-Order Risk Bound

▶ Using Boole’s inequality

R ≤ P

 N⋃
j=1

max
t∈Tj

www j(t) ≥ dj

 ≤
N∑
j=1

P

(
max

t∈[tj−1,tj ]
www j(t) ≥ dj

)
︸ ︷︷ ︸

pj

.

▶ This bound possesses the time-additive structure.
▶ pj is the continuous-time risk associated with the time

segment Tj = [tj−1, tj ].

How to compute pj?
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Reflection principle of Brownian Motion

Ifwww(t), t ≥ 0 is a one-dimensional Brownian motion started in
the origin and d > 0 is a threshold value, then

P

(
sup
s∈[0,t]

www(s) ≥ d

)
= 2P (www(t) ≥ d) .

  

 

 

Durrett 2019.
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First-Order Risk Bound: Computation of pj
▶ Approach proposed by Ariu et al.5

– Compute an upper bound to pj

pj = P

(
max

t∈[tj−1,tj ]
www j(t) ≥ dj

)
≤ P

(
max
t∈[0,tj ]

www j(t) ≥ dj

)
.

– Using the reflection principle

P

(
max
t∈[0,tj ]

www j(t) ≥ dj

)
=2P(www j(tj)≥dj)=2P

(
aTj xxx j ≥dj

)
.

5 (Ariu et al. 2017)
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Markov property of Brownian Motion

Letwww(t), t ≥ 0 be an n-dimensional Brownian motion started in
z ∈ Rn. Let s ≥ 0, then the process w̃ww(t) = www(t + s)−www(s),
t ≥ 0 is again a Brownian motion started in the origin and it is
independent of the processwww(t), 0 ≤ t ≤ s .

 

  

 

 

Mörters and Peres 2010.
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First-Order Risk Bound: Computation of pj
▶ Our approach

Compute pj exactly using the Markov property and reflection
principle of Brownian motion

pj = P

(
max

t∈[tj−1,tj ]
www j(t) ≥ dj

)
=P

(
max

t∈[tj−1,tj ]
www j(t) ≥ dj , www j(tj−1) ≥ dj

)
+ P

(
max

t∈[tj−1,tj ]
www j(t) ≥ dj , www j(tj−1) < dj

)
.

If zzzsj = www j(tj−1), zzzej := www j(tj), zzz j :=
[
zzzsj zzzej

]T
pj =

∫ ∞

zsj =dj

µzzzsj (z
s
j )dz

s
j + 2

∫ dj

zsj =−∞

∫ ∞

zej =dj

µzzz j (zj)dz
e
j dz

s
j .
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Second-Order Risk Bound

▶ Using Hunter’s inequality

R ≤ P


N⋃
j=1

max
t∈Tj

www j(t) ≥ dj︸ ︷︷ ︸
Ej

 ≤
N∑
j=1

pj −
N−1∑
j=1

pj , j+1.

▶ pj , j+1 = P(Ej ∩ Ej+1) is the joint risk associated with the
time segments Tj and Tj+1.

▶ This bound possesses the time-additive structure.

How to compute pj , j+1?
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Second-Order Risk Bound: Computation of pj , j+1

▶ Compute pLBj , j+1: an lower bound to pj , j+1

R ≤
N∑
j=1

pj −
N−1∑
j=1

pLBj , j+1.

▶ If tj−1 = t̂0j < t̂1j < . . . < t̂
rj
j = tj is a discretization of the

time segment Tj , and zzz ij := www j(t̂
i
j ) = aTj xxx(t̂

i
j ),

Dj :=
(
zzz0
j < dj

)
∩
(
zzz1
j < dj

)
∩ . . . ∩

(
zzz
rj
j < dj

)
, then pj , j+1

is lower bounded by pLBj , j+1 given as

pLBj , j+1 = 1 − P(Dj)− P(Dj+1) + P(Dj ∩ Dj+1).
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Simulation Results
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Simulation Results
Comparison of different risk estimates over 100 trajectories

Risk Estimates Avg. Time Bias RMSE %Cons.
Monte Carlo 101.50 s 0 0 -
Discrete-time

rd : 5 0.14 s −0.14 0.18 28%
rd : 10 0.26 s −0.002 0.16 59%
rd : 20 0.52 s 0.31 0.57 82%
rd : 55 1.53 s 1.50 2.33 100%
rd : 100 2.87 s 2.98 4.53 100%

Continuous-time
Ariu et al. 6 1.39 s 0.97 1.33 100%
Our 1st order 1.47 s 0.66 0.90 100%
Our 2nd order 2.23 s 0.28 0.36 100%

6 (Ariu et al. 2017)
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Summary
▶ We derived two upper bounds for the continuous-time

end-to-end risk using properties of Brownian motion.
▶ These bounds possess the time-additive structure, making

them useful for risk-aware motion planning.
▶ Numerical validation demonstrates that our bounds

outperform the state-of-the-art discrete-time bound and
are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

▶ Future work: Risk-constrained optimal control and risk
analysis of systems with generalized nonlinear stochastic
dynamics via an HJB-PDE 7.

7 Patil et al. "Chance-Constrained Stochastic Optimal Control via Path Integral and Finite DifferenceMethods." arXiv
preprint arXiv:2205.00628 (2022).
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