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» End-to-end risks in stochastic robot
navigation
- Characterize safety of the planned
trajectories.
- Plan risk optimal trajectories.
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Background

» End-to-end risks in stochastic robot
navigation
- Characterize safety of the planned
trajectories.
- Plan risk optimal trajectories.

» Continuous-time end-to-end risk

R - p( U xon(e) € X> |

te[0,T]

» R is challenging to compute
- x¥%(t) across [0, T] are correlated.
- We derive two upper bounds using properties of
Brownian motion, and Boole and Hunter's inequalities .
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Existing Approaches

» Monte Carlo methods'’

- Computationally expensive and cumbersome to embed in
planning algorithms.

" (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)
2 (Patil and Tanaka 2021)
3 (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)

4 (Ariu et al. 2017)
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Existing Approaches

» Monte Carlo methods"
- Computationally expensive and cumbersome to embed in
planning algorithms.

» Discrete-time approximations 2

N N
-R~P (U XSys(t,') S Xobs) < Z P(Xs}/s(l',') S Xobs)-
i=0 i=0

- Sensitive to the chosen time discretization.
» Continuous-time methods

- PDE-based methods 3: closed-form solution not tractable.
- Reflection-principle-based method 4

' (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)
2 (Patil and Tanaka 2021)

3 (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)

4 (Ariu et al. 2017)
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Problem Formulation

» Planned trajectory
- Afinite sequences of positions {xf”a” € Xpree}j=01,....n @and
control inputs {vjp'a" €eR"Yj—o01,.. . N—1.

_ _ o plan _ _plan plan
—letT=0=t<...<tvn=T)st v/"At; =x77 — x"".
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control inputs {vjp'a" €eR"Yj—o01,.. . N—1.
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» Robot dynamics
- Controlled Itd process
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Problem Formulation

» Planned trajectory
- Afinite sequences of positions {xf”a” € Xpree}j=01,....n @and
control inputs {vjp'a" €R"}io1,. . .N-1.
-letT=0=th<...<ty=T)st \/J'a”AtJ = J‘fl”f@f"a".
» Robot dynamics
- Controlled Itd process
dx¥(t) = v¥5(t)dt + Rz dw(t),

plan
J

where v*(t) = v Vte [t i)

» Continuous-time end-to-end risk
- 7 =[tji-1. )],

N
R=p| U 270t | =P U U506 2ue
te[0,T] Jj=1teT;
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Risk in terms of 1-D Brownian Motions

where x(t) = x¥5(t) — xPl"(¢).
wj(t) = aij(t) is a one-dimensional Brownian motion for

t € [0, T] that starts in the origin.

R <P maxw(t) 2 4
1
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First-Order Risk Bound

» Using Boole's inequality

N
R<P max wi(t) > d; | < P max w;(t)>d;|.
< U wj(t) > dj | < (te[tj_l,tj]wj( ) > J)

Pj

J=1 J=1
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» Using Boole's inequality

N
R<P max wi(t) > d; | < P max w;(t)>d;|.
< U wj(t) > dj | < (te[tj_l,tj]wj( ) > J)

Pj

J=1 J=1

> This bound possesses the time-additive structure.
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» Using Boole's inequality

N N
R<P (U maxwi(t) 2d; | < 2

P ( max w;(t) > dj) .
J=1 J

te[tj—1,4]
~—

Pj

1

> This bound possesses the time-additive structure.

» p; is the continuous-time risk associated with the time
segment 7; = [tj_1, t;].



The University of Texas at Austin

Cockrell School of Engineering

First-Order Risk Bound

» Using Boole's inequality

N N
R<P max w;(t) > d; | < P max (tY>d: ).
< Jgjl o7 wi(t) > d; | < < (te[tj_l,tj]wj( ) > J)

-~

Pj

1

> This bound possesses the time-additive structure.

» p; is the continuous-time risk associated with the time
segment 7; = [tj_1, t;].

How to compute p;?
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Reflection principle of Brownian Motion

If w(t), t > 0 is a one-dimensional Brownian motion started in
the origin and d > 0 is a threshold value, then

P ( sup w(s) > d> =2P (w(t) > d).

s€[0,t]

Durrett 2019.
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First-Order Risk Bound: Computation of p;

» Approach proposed by Ariu et al.>
- Compute an upper bound to p;

pj = P< max w;(t) > dj> < P(max wj(t) > dj).

elty 1,51 ¢€(0,]
bow(t) A w;(t) A
d; .'/\//JT < d; /-/‘:
Lt . .
0 tjfl tj 0 t]',1 t]'

5 (Ariu et al. 2017)
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First-Order Risk Bound: Computation of p;

» Approach proposed by Ariu et al.>
- Compute an upper bound to p;

pj—P< max wj(t)zc/j>§P(maxw(t)>dj).

elty 1,51 ¢€(0,]
Pow;(t) A bow;(t) A
4 I'/\//-/T < 4 ; /-/—:
: - t
0 ti1 t; 0 t 1 t;

- Using the reflection principle

P ((max wi(0) > &) ~2P(wi(t) > d) ~2P ], ).
t€[0,t

5 (Ariu et al. 2017)
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Markov property of Brownian Motion

Let w(t), t > 0 be an n-dimensional Brownian motion started in
z € R". Let s > 0, then the process w(t) = w(t +s) — w(s),

t > 0is again a Brownian motion started in the origin and it is
independent of the process w(t), 0 < t < s.

o

Mérters and Peres 2010.
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» Our approach

Compute p; exactly using the Markov property and reflection
principle of Brownian motion

=P max_wi(0)= o) =P max_w(t) > di wi(t1) > o

tefti_1.1] te[tj—1,t]

+ P< max wj(t) > dj, wj(tj-1) < dj)-

teftji—1,t]]
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» Our approach

Compute p; exactly using the Markov property and reflection
principle of Brownian motion

=P max_wi(0)= o) =P max_w(t) > di wi(t1) > o

tefti_1.1] te[tj—1,t]

+ P< max wj(t) > dj, wj(tj-1) < dj)-

teftji—1,t]]

.
If 2} = wj(tj1), 2§ = w;(ty), 2= [z} Z]]

0o d; [eS)
pj =/ pzs (27)dzj + 2 / / Hz;(2;)dz} dz;.
z7=d; zjsz—oo zf:dj

j
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Second-Order Risk Bound

» Using Hunter's inequality

N N N-1
R<P|{J max w;(t) > d; | < D P D Pij
Jj=1 J_,_/ Jj=1 Jj=1

» pjj+1 = P(& N &jy1)is the joint risk associated with the
time segments 7; and 7.
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» Using Hunter's inequality

N N N—1
R<P|{J max w;(t) > d; | < D P D Pij
j=1._" , j=1 j=1

» pjj+1 = P(& N &jy1)is the joint risk associated with the
time segments 7; and 7.
» This bound possesses the time-additive structure.
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Second-Order Risk Bound

» Using Hunter's inequality

N N N—1
R<P|{J max w;(t) > d; | < D P D Pij
j=1._" , j=1 j=1

» pjj+1 = P(& N &jy1)is the joint risk associated with the
time segments 7; and 7.
» This bound possesses the time-additive structure.

How to compute p; ;,1?
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> Compute p;?,;: an lower bound to p; ;11

N
LB
Rﬁzpf Pj j+1-
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Second-Order Risk Bound: Computation of p; ;11

> Compute p;?,;: an lower bound to p; ;11
N
LB
R < Z pPj — Pj j+1-

> If 1 =1 < i <... <t/ = t;is adiscretization of the
time segment 7j, and zj := w;(t]) = a/ x({)),
D= (20 < d)n (2t <dj)n...0 (2] < d), then p i
is lower bounded by pi%, ; given as

ij,?Jrl =1-P(Dj) — P(Dj+1) + P(Dj N Djy1).
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Simulation Results

0.8
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Trajectories planned with the
instantaneous safety

Pedram et al. 2021.
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Comparison of different risk estimates over 100 trajectories

| Risk Estimates | Avg. Time | Bias | RMSE | %Cons. |

Monte Carlo 101.50 s 0 0 -
Discrete-time
rqg:5 0.14s —0.14 0.18 28%
rqg 2 10 0.26s —0.002 | 0.16 59%
rqg : 20 0.52s 0.31 0.57 82%
rg : 55 1.53s 1.50 2.33 100%
rq : 100 2.87s 2.98 4,53 100%
Continuous-time

Ariu et al. ® 1.39s 0.97 1.33 100%
Our 1% order 1.47 s 0.66 0.90 100%
Our 2" order 2.23s 0.28 0.36 100%

6 (Ariu et al. 2017)
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Summary
» We derived two upper bounds for the continuous-time
end-to-end risk using properties of Brownian motion.

» These bounds possess the time-additive structure, making
them useful for risk-aware motion planning.

» Numerical validation demonstrates that our bounds
outperform the state-of-the-art discrete-time bound and
are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

7 Patil et al. "Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods." arXiv
preprint arXiv:2205.00628 (2022).
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Summary

» We derived two upper bounds for the continuous-time
end-to-end risk using properties of Brownian motion.

» These bounds possess the time-additive structure, making
them useful for risk-aware motion planning.

» Numerical validation demonstrates that our bounds
outperform the state-of-the-art discrete-time bound and
are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

» Future work: Risk-constrained optimal control and risk
analysis of systems with generalized nonlinear stochastic
dynamics via an H)B-PDE 7.

7 Patil et al. "Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods." arXiv
preprint arXiv:2205.00628 (2022).
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