

European Control Conference 2022

Upper Bounds for Continuous-Time End-to-End Risks in Stochastic Robot Navigation

Apurva Patil Takashi Tanaka July 15, 2022

- Background
- **Existing Approaches**
- **Problem Formulation**
- Risk in terms of 1-D Brownian Motions
- First-Order Risk Bound
- Second-Order Risk Bound
- Simulation Results
- Summary

Background

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.

Continuous-time end-to-end risk

$$\mathcal{R} = P\left(\bigcup_{t\in[0,T]} \mathbf{x}^{sys}(t) \in \mathcal{X}_{obs}\right).$$

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.
 - Continuous-time end-to-end risk

$$\mathcal{R} = P\left(igcup_{t\in[0,T]} oldsymbol{x}^{sys}(t) \in \mathcal{X}_{obs}
ight)$$

- \mathcal{R} is challenging to compute
 - $\mathbf{x}^{sys}(t)$ across [0, T] are correlated.
 - We derive two upper bounds using properties of Brownian motion, and Boole and Hunter's inequalities.

Existing Approaches

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and cumbersome to embed in planning algorithms.

¹ (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)

² (Patil and Tanaka 2021)

³ (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)

⁴ (Ariu et al. 2017)

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and cumbersome to embed in planning algorithms.
- Discrete-time approximations²

-
$$\mathcal{R} \approx P\left(\bigcup_{i=0}^{N} \mathbf{x}^{sys}(t_i) \in \mathcal{X}_{obs}\right) \leq \sum_{i=0}^{N} P\left(\mathbf{x}^{sys}(t_i) \in \mathcal{X}_{obs}\right).$$

- Sensitive to the chosen time discretization.

- ² (Patil and Tanaka 2021)
- ³ (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)
- ⁴ (Ariu et al. 2017)

¹ (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and cumbersome to embed in planning algorithms.
- Discrete-time approximations²

-
$$\mathcal{R} \approx P\left(\bigcup_{i=0}^{N} \mathbf{x}^{sys}(t_i) \in \mathcal{X}_{obs}\right) \leq \sum_{i=0}^{N} P\left(\mathbf{x}^{sys}(t_i) \in \mathcal{X}_{obs}\right).$$

- Sensitive to the chosen time discretization.
- Continuous-time methods
 - PDE-based methods ³: closed-form solution not tractable.
 - Reflection-principle-based method 4

¹ (Janson, Schmerling, and Pavone 2018), (Blackmore et al. 2010)

² (Patil and Tanaka 2021)

³ (Shah, Pahlajani, and Tanner 2011), (Chern et al. 2021)

⁴ (Ariu et al. 2017)

Problem Formulation

Problem Formulation

- Planned trajectory
 - A finite sequences of positions $\{x_j^{plan} \in \mathcal{X}_{free}\}_{j=0,1,...,N}$ and control inputs $\{v_j^{plan} \in \mathbb{R}^n\}_{j=0,1,...,N-1}$.
 - Let $\mathcal{T} = (0 = t_0 < \ldots < t_N = T)$ s.t. $v_j^{plan} \Delta t_j = x_{j+1}^{plan} x_j^{plan}$.

Problem Formulation

- Planned trajectory
 - A finite sequences of positions $\{x_j^{plan} \in \mathcal{X}_{free}\}_{j=0,1,...,N}$ and control inputs $\{v_j^{plan} \in \mathbb{R}^n\}_{j=0,1,...,N-1}$.

- Let
$$T = (0 = t_0 < \ldots < t_N = T)$$
 s.t. $v_j^{plan} \Delta t_j = x_{j+1}^{plan} - x_j^{plan}$.

- Robot dynamics
 - Controlled Itô process

$$d\mathbf{x}^{sys}(t) = \mathbf{v}^{sys}(t)dt + R^{\frac{1}{2}}d\mathbf{w}(t),$$

where $\mathbf{v}^{sys}(t) = v_j^{plan} \quad \forall t \in [t_j, t_{j+1}).$

Problem Formulation

- Planned trajectory
 - A finite sequences of positions $\{x_j^{plan} \in \mathcal{X}_{free}\}_{j=0,1,...,N}$ and control inputs $\{v_j^{plan} \in \mathbb{R}^n\}_{j=0,1,...,N-1}$.

- Let
$$\mathcal{T} = (0 = t_0 < \ldots < t_N = T)$$
 s.t. $v_j^{plan} \Delta t_j = x_{j+1}^{plan} - x_j^{plan}$.

- Robot dynamics
 - Controlled Itô process

$$d\boldsymbol{x}^{sys}(t) = \boldsymbol{v}^{sys}(t)dt + R^{\frac{1}{2}}d\boldsymbol{w}(t),$$

where $\mathbf{v}^{sys}(t) = v_j^{plan} \quad \forall t \in [t_j, t_{j+1}).$

Continuous-time end-to-end risk

- If
$$\mathcal{T}_j = [t_{j-1}, t_j]$$
,
 $\mathcal{R} = P\left(\bigcup_{t \in [0, T]} \mathbf{x}^{sys}(t) \in \mathcal{X}_{obs}\right) = P\left(\bigcup_{j=1}^N \bigcup_{t \in \mathcal{T}_j} \mathbf{x}^{sys}(t) \in \mathcal{X}_{obs}\right)$

Background

Existing Approaches

Problem Formulation

Risk in terms of 1-D Brownian Motions

First-Order Risk Bound

Second-Order Risk Bound

Simulation Results

Summary

Risk in terms of 1-D Brownian Motions

$$\mathcal{R} = P\left(igcup_{j=1}^{\mathsf{N}}igcup_{t\in\mathcal{T}_{j}}^{\mathsf{x}^{\mathsf{sys}}}(t)\in\mathcal{X}_{obs}
ight)$$

 $\leq P\left(igcup_{j=1}^{\mathsf{N}}igcup_{t\in\mathcal{T}_{j}}^{\mathsf{T}}a_{j}^{\mathsf{T}}\mathbf{x}(t)\geq d_{j}
ight)$

where $\mathbf{x}(t) = \mathbf{x}^{sys}(t) - x^{plan}(t)$.

Risk in terms of 1-D Brownian Motions

 $\boldsymbol{w}_j(t) = a_j^T \boldsymbol{x}(t)$ is a one-dimensional Brownian motion for $t \in [0, T]$ that starts in the origin.

$$\mathcal{R} \leq P\left(igcup_{j=1}^{\mathsf{N}} \max_{t\in\mathcal{T}_j} oldsymbol{w}_j(t) \geq d_j
ight)$$

First-Order Risk Bound

Using Boole's inequality

$$\mathcal{R} \leq P\left(\bigcup_{j=1}^{N} \max_{t \in \mathcal{T}_{j}} \boldsymbol{w}_{j}(t) \geq d_{j}\right) \leq \underbrace{\sum_{j=1}^{N} \underbrace{P\left(\max_{t \in [t_{j-1}, t_{j}]} \boldsymbol{w}_{j}(t) \geq d_{j}\right)}_{P_{j}}.$$

Using Boole's inequality

$$\mathcal{R} \leq P\left(\bigcup_{j=1}^{N} \max_{t \in \mathcal{T}_{j}} \boldsymbol{w}_{j}(t) \geq d_{j}
ight) \leq \sum_{j=1}^{N} \underbrace{P\left(\max_{t \in [t_{j-1}, t_{j}]} \boldsymbol{w}_{j}(t) \geq d_{j}
ight)}_{p_{j}}.$$

► This bound possesses the time-additive structure.

Using Boole's inequality

$$\mathcal{R} \leq P\left(igcup_{j=1}^{\mathsf{N}} \max_{t\in\mathcal{T}_j} \mathbf{w}_j(t) \geq d_j
ight) \leq \overline{\sum_{j=1}^{\mathsf{N}} \underbrace{P\left(\max_{t\in[t_{j-1},t_j]} \mathbf{w}_j(t) \geq d_j
ight)}_{p_j}}.$$

- ► This bound possesses the time-additive structure.
- ▶ p_j is the continuous-time risk associated with the time segment $T_j = [t_{j-1}, t_j]$.

Using Boole's inequality

$$\mathcal{R} \leq P\left(igcup_{j=1}^{N} \max_{t\in\mathcal{T}_{j}} oldsymbol{w}_{j}(t) \geq d_{j}
ight) \leq \overline{\sum_{j=1}^{N} \underbrace{P\left(\max_{t\in[t_{j-1},t_{j}]} oldsymbol{w}_{j}(t) \geq d_{j}
ight)}_{P_{j}}}.$$

- ► This bound possesses the time-additive structure.
- ▶ p_j is the continuous-time risk associated with the time segment $T_j = [t_{j-1}, t_j]$.

How to compute *p_j*?

Reflection principle of Brownian Motion

If w(t), $t \ge 0$ is a one-dimensional Brownian motion started in the origin and d > 0 is a threshold value, then

$$P\left(\sup_{s\in[0,t]}\boldsymbol{w}(s)\geq d\right)=2P\left(\boldsymbol{w}(t)\geq d\right).$$

First-Order Risk Bound: Computation of p_j

- Approach proposed by Ariu et al.⁵
 - Compute an upper bound to p_j

$$p_j = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j\right) \le P\left(\max_{t \in [0, t_j]} \boldsymbol{w}_j(t) \ge d_j\right).$$

First-Order Risk Bound: Computation of p_j

- Approach proposed by Ariu et al.⁵
 - Compute an upper bound to p_j

$$p_j = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j\right) \le P\left(\max_{t \in [0, t_j]} \boldsymbol{w}_j(t) \ge d_j\right).$$

- Using the reflection principle

$$P\left(\max_{t\in[0,t_j]} \boldsymbol{w}_j(t) \geq d_j\right) = 2P(\boldsymbol{w}_j(t_j) \geq d_j) = 2P(a_j^T \boldsymbol{x}_j \geq d_j).$$

⁵ (Ariu et al. 2017)

Markov property of Brownian Motion

Let $\boldsymbol{w}(t)$, $t \ge 0$ be an *n*-dimensional Brownian motion started in $z \in \mathbb{R}^n$. Let $s \ge 0$, then the process $\tilde{\boldsymbol{w}}(t) = \boldsymbol{w}(t+s) - \boldsymbol{w}(s)$, $t \ge 0$ is again a Brownian motion started in the origin and it is independent of the process $\boldsymbol{w}(t)$, $0 \le t \le s$.

First-Order Risk Bound: Computation of *p_j*

Our approach

Compute p_j exactly using the Markov property and reflection principle of Brownian motion

$$p_j = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j\right) = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j, \ \boldsymbol{w}_j(t_{j-1}) \ge d_j\right)$$
$$+ P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j, \ \boldsymbol{w}_j(t_{j-1}) < d_j\right)$$

First-Order Risk Bound: Computation of *p_j*

Our approach

Compute p_j exactly using the Markov property and reflection principle of Brownian motion

$$p_j = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j\right) = P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j, \ \boldsymbol{w}_j(t_{j-1}) \ge d_j\right)$$
$$+ P\left(\max_{t \in [t_{j-1}, t_j]} \boldsymbol{w}_j(t) \ge d_j, \ \boldsymbol{w}_j(t_{j-1}) < d_j\right)$$

If
$$\boldsymbol{z}_j^s = \boldsymbol{w}_j(t_{j-1}), \ \boldsymbol{z}_j^e \coloneqq \boldsymbol{w}_j(t_j), \ \boldsymbol{z}_j \coloneqq \begin{bmatrix} \boldsymbol{z}_j^s & \boldsymbol{z}_j^e \end{bmatrix}^T$$

$$p_j = \int_{z_j^s = d_j}^{\infty} \mu_{\boldsymbol{z}_j^s}(z_j^s) dz_j^s + 2 \int_{z_j^s = -\infty}^{d_j} \int_{z_j^e = d_j}^{\infty} \mu_{\boldsymbol{z}_j}(z_j) dz_j^e dz_j^s.$$

Second-Order Risk Bound

Second-Order Risk Bound

Using Hunter's inequality

$$\mathcal{R} \leq P\left(\bigcup_{j=1}^{N} \underbrace{\max_{t \in \mathcal{T}_j} \boldsymbol{w}_j(t) \geq d_j}_{\mathcal{E}_j}\right) \leq \underbrace{\sum_{j=1}^{N} p_j - \sum_{j=1}^{N-1} p_{j,j+1}}_{\mathcal{E}_j}.$$

▶ $p_{j,j+1} = P(\mathcal{E}_j \cap \mathcal{E}_{j+1})$ is the joint risk associated with the time segments \mathcal{T}_j and \mathcal{T}_{j+1} .

Second-Order Risk Bound

Using Hunter's inequality

$$\mathcal{R} \leq P\left(\bigcup_{j=1}^{N} \underbrace{\max_{t \in \mathcal{T}_j} \boldsymbol{w}_j(t) \geq d_j}_{\mathcal{E}_j}\right) \leq \underbrace{\sum_{j=1}^{N} p_j - \sum_{j=1}^{N-1} p_{j,j+1}}_{\mathcal{E}_j}.$$

▶ $p_{j,j+1} = P(\mathcal{E}_j \cap \mathcal{E}_{j+1})$ is the joint risk associated with the time segments \mathcal{T}_j and \mathcal{T}_{j+1} .

► This bound possesses the time-additive structure.

Second-Order Risk Bound

Using Hunter's inequality

$$\mathcal{R} \leq P\left(\bigcup_{j=1}^{N} \underbrace{\max_{t \in \mathcal{T}_j} \boldsymbol{w}_j(t) \geq d_j}_{\mathcal{E}_j}\right) \leq \underbrace{\sum_{j=1}^{N} p_j - \sum_{j=1}^{N-1} p_{j,j+1}}_{\mathcal{E}_j}.$$

▶ $p_{j,j+1} = P(\mathcal{E}_j \cap \mathcal{E}_{j+1})$ is the joint risk associated with the time segments \mathcal{T}_j and \mathcal{T}_{j+1} .

► This bound possesses the time-additive structure.

How to compute $p_{j,j+1}$?

Second-Order Risk Bound: Computation of $p_{j,j+1}$

• Compute $p_{j,j+1}^{LB}$: an lower bound to $p_{j,j+1}$

$$\mathcal{R} \leq \sum_{j=1}^N p_j - \sum_{j=1}^{N-1} p_{j,j+1}^{LB}.$$

Second-Order Risk Bound: Computation of $p_{j,j+1}$

• Compute $p_{j,j+1}^{LB}$: an lower bound to $p_{j,j+1}$

$$\mathcal{R} \leq \sum_{j=1}^N p_j - \sum_{j=1}^{N-1} p_{j,j+1}^{LB}$$

▶ If $t_{j-1} = \hat{t}_j^0 < \hat{t}_j^1 < \ldots < \hat{t}_j^{r_j} = t_j$ is a discretization of the time segment \mathcal{T}_j , and $\mathbf{z}_j^i \coloneqq \mathbf{w}_j(\hat{t}_j^i) = a_j^T \mathbf{x}(\hat{t}_j^i)$, $\mathcal{D}_j \coloneqq (\mathbf{z}_j^0 < d_j) \cap (\mathbf{z}_j^1 < d_j) \cap \ldots \cap (\mathbf{z}_j^{r_j} < d_j)$, then $p_{j,j+1}$ is lower bounded by $p_{i,j+1}^{LB}$ given as

$$p_{j,j+1}^{LB} = 1 - P(\mathcal{D}_j) - P(\mathcal{D}_{j+1}) + P(\mathcal{D}_j \cap \mathcal{D}_{j+1}).$$

Simulation Results

Simulation Results

Trajectories planned with the instantaneous safety

Pedram et al. 2021.

 B_c : continuous-time risk bounds B_d : discrete-time risk bounds r_d : rate of time discretization

Simulation Results

Comparison of different risk estimates over 100 trajectories

Risk Estimates	Avg. Time	Bias	RMSE	%Cons.
Monte Carlo	101.50 s	0	0	-
Discrete-time				
<i>r_d</i> : 5	0.14 s	-0.14	0.18	28%
<i>r_d</i> : 10	0.26 s	-0.002	0.16	59%
<i>r_d</i> : 20	0.52 s	0.31	0.57	82%
<i>r_d</i> : 55	1.53 s	1.50	2.33	100%
<i>r_d</i> : 100	2.87 s	2.98	4.53	100%
Continuous-time				
Ariu et al. ⁶	1.39 s	0.97	1.33	100%
Our 1 st order	1.47 s	0.66	0.90	100%
Our 2 nd order	2.23 s	0.28	0.36	100%

Summary

Summary

- We derived two upper bounds for the continuous-time end-to-end risk using properties of Brownian motion.
- These bounds possess the time-additive structure, making them useful for risk-aware motion planning.
- Numerical validation demonstrates that our bounds outperform the state-of-the-art discrete-time bound and are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

⁷ Patil et al. "Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods." arXiv preprint arXiv:2205.00628 (2022).

Summary

- We derived two upper bounds for the continuous-time end-to-end risk using properties of Brownian motion.
- These bounds possess the time-additive structure, making them useful for risk-aware motion planning.
- Numerical validation demonstrates that our bounds outperform the state-of-the-art discrete-time bound and are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

Future work: Risk-constrained optimal control and risk analysis of systems with generalized nonlinear stochastic dynamics via an HJB-PDE ⁷.

⁷ Patil et al. "Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods." arXiv preprint arXiv:2205.00628 (2022).