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Background

▶ End-to-end risks in stochastic robot
navigation

– Characterize safety of the planned
trajectories.

– Plan risk optimal trajectories.

▶ Discrete-time end-to-end risk:
P(E ) = P(

T∨
t=0

Et), where Et := xxxsys
t ∈ X obs.

▶ Exact evaluation of the end-to-end risk P(E ) is challenging
– {Et}Tt=0 are statistically dependent events.
– We derive upper and lower bounds using inequalities of
Hunter, Kounias, Fréchet, and Dawson .
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Existing Approaches
▶ Monte Carlo methods 1

– Computationally expensive and might underestimate the
failure probability.

▶ Approximation of law of total probability 2

P

(
T∨
t=0

Et

)
≈1 −

T∏
t=0

P
(
E c
t |E c

t−1
)

– Can result in overly conservative estimates or can
underestimate the failure probability.

▶ Boole’s inequality 3: P
(

T∨
t=0

Et

)
≤

T∑
t=0

P (Et)

– Commonly used in risk-aware control problems due to its
time-additivity.

– Ignores the dependency among events {Et}Tt=0, can result
in overly conservative estimates.

1 (Janson, Schmerling, and Pavone 2018), (Blackmore, Ono, Bektassov, et al. 2010)
2 (Strawser and B. Williams 2018)
3 (Blackmore, Ono, and B. C. Williams 2011), (Ono et al. 2015)
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Problem Formulation
▶ Planned trajectory

– A finite sequences of positions {xplan
t ∈ Xfree}Tt=0 and

control inputs {uplan
t ∈ Rm}T−1

t=0 satisfying
xplan
t+1 = Atx

plan
t + Btu

plan
t .

▶ Executed trajectory

xxxsys
t+1 = Atxxx

sys
t + Btuuu

sys
t +www t , www t ∼ N (0,Wt)

– Defining xxx t := xxxsys
t − xplan

t and uuut := uuusys
t − uplan

t , we get
xxx t+1 = Atxxx t + Btuuut +www t , www t ∼ N (0,Wt) ,

▶ Sensor model
yyy t = Ctxxx t + vvv t , vvv t ∼ N (0,Vt)

▶ Discrete-time end-to-end risk:
P(E ) = P(

T∨
t=0

Et), where Et := xxxsys
t ∈ X obs.
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Probability Inequalities

Define:

pt := P (Et) , ps,t := P (Es
∧
Et) , S1 :=

∑
0≤t≤T

pt , S2 :=
∑

0≤s<t≤T

ps,t .

▶ Kwerel’s upper bound: P (E ) ≤ S1 − 2
T+1S2.

▶ Kounias’ upper bound: P (E ) ≤ S1 − max
0≤s≤T

∑
0≤t≤T , t ̸=s

ps,t .

▶ Hunter’s upper bound: P (E ) ≤ S1 −max
τ

∑
(s,t):es,t∈τ

ps,t

where τ is a spanning tree of the graph whose vertices are
{Et}Tt=0, with Es and Et joined by an edge es,t if Es

∧
Et ̸= ∅.

▶ Suboptimal Hunter’s upper bound:
P (E ) ≤ S1 −

∑
1≤t≤T

pt−1,t .
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Probability Inequalities

▶ Fréchet’s lower bound: P (E ) ≥ max
0≤t≤T

pt .

▶ Bonferroni’s second-order lower bound: P (E ) ≥ S1 − S2.

▶ Dawson and Sankoff’s lower bound: if S1 > 0,
P (E ) ≥ 2

k+1S1 − 2
k(k+1)S2,

where k − 1 is the integer part of 2S2/S1.
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Trajectory Tracking Controller

▶ Optimal controller for stochastic LQR 4:
uuut = Ftx̂xx t|t

Ft are the LQR gains and x̂xx t|t are the state estimates
obtained by the Kalman filter.

▶ The a priori state estimates x̂xx t|t−1 and the a posteriori state
estimates x̂xx t|t evolve according to

x̂xx t|t−1 = At−1x̂xx t−1|t−1 + Bt−1uuut−1, x̂0|0 = 0

x̂xx t|t = x̂xx t|t−1 + Gt

(
yyy t − Ctx̂xx t|t−1

)
,

where Gt are the Kalman gains.

4 (Stengel 1994)
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Closed-Loop Trajectory Distribution

The state deviation xxx t and its a priori estimate x̂xx t|t−1 jointly
evolve as:

xxx t+1 = Atxxx t +www t , www t ∼ N
(
0,W t

)
where xxx t :=

[
xxx t

x̂xx t|t−1

]
, www t :=

[
BtFtGtvvv t +www t

(At + BtFt)Gtvvv t

]
,

At :=

[
At + BtFtGtCt BtFt (I − GtCt)
(At + BtFt)GtCt (At + BtFt) (I − GtCt)

]
,

W t :=

[
BtFtGtVtG

⊤
t F

⊤
t B

⊤
t +Wt BtFtGtVtG

⊤
t (At+BtFt)

T

(At+BtFt)GtV
⊤
t G

⊤
t F

⊤
t B

⊤
t (At+BtFt)GtVtG

⊤
t (At+BtFt)

T

]
.
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Closed-Loop Trajectory Distribution
Stacking xxx t for all time steps, we get

xxx traj = Mx0 + Nwww traj, www traj ∼ N

(
0, diag

0≤t≤T−1
W t

)
,

where xxx traj :=


xxx0
xxx1
xxx2
...

xxxT

 ,www traj :=


www0
www1
www2
...

wwwT−1

 ,M :=


I

A0
A1A0
...

AT−1 . . .A0

 ,

N :=


0 0 . . . 0
I 0 . . . 0
A1 I . . . 0
...

... . . . ...
AT−1 . . .A1 AT−1 . . .A2 . . . I

 .
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Closed-Loop Trajectory Distribution

▶ Assuming x0 = 0, the distribution of xxx traj can be written as

xxx traj∼N
(
0,X traj

)
, X

traj
=N

(
diag

0≤t≤T−1
W t

)
N⊤.

▶ Defining xxx traj :=
[
xxx0 xxx1 . . . xxxT

]⊤
, xxx traj∼N

(
0,X traj)

where X traj is obtained by marginalizing X
traj.

▶ End-to-end probability of failure:

P(E ) = 1 −
∫
X free

N
(
0,X traj) dx traj.

▶ Evaluating the above integral on a high dimensional
non-convex region is computationally expensive.
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Computation of the Bounds
▶ The main task in computing the probability bounds is to

compute the univariate probabilities pt , and bivariate joint
probabilities ps,t .

xxxsys
t ∼ N

(
xplan
t ,Xt

)
[
xxxsys
s xxxsys

t

]⊤ ∼ N
([

xplan
s xplan

t

]⊤
,Xst

)
where Xt and Xst are obtained by marginalizing X traj.

pt=
∫
X obs N

(
xplan
t ,Xt

)
dxsys

t

ps,t=
∫
X obs

∫
X obs N

([
xplan
s xplan

t

]⊤
,Xst

)
dxsys

s dxsys
t

▶ In this work, we assume that the obstacles are convex
polytopes and develop a formulation to compute pt and
ps,t , numerically. Please refer to the paper for the details.
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Simulation Results
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Simulation Results
Comparison of different risk estimates over 100 trajectories

Estimates Mean Abs. Error Avg. Time [s]
Monte Carlo 0 46.83
Upper bounds

Boole 40.59 0.01
Kwerel 38.15 2.43
Kounias 13.34 2.42
Hunter 8.63 2.41

Hunter suboptimal 10.25 0.18
Lower bounds
Bonferroni 54.88 2.44
Fréchet 40.08 0.01
Dawson 16.74 2.44



22/25

Outline

Background

Existing Approaches

Problem Formulation

Probability Inequalities

Closed-Loop Trajectory Distribution

Computation of the Bounds

Simulation Results

Higher-Order Probability Bounds

Summary



23/25

Higher-Order Probability Bounds

▶ A third-order upper bound computed using the Cherry
Trees approach 5

▶ Bounds higher than order 3 can be computed using the
linear programming algorithms 6

▶ Bonferroni’s kth-order bound:
P (E ) ≤ S1 − S2 + S3 − . . .− Sk−1 + Sk if k < T is odd
P (E ) ≥ S1 − S2 + S3 − . . .+ Sk−1 − Sk if k < T is even
where Sr =

∑
0≤j1<...<jr≤T

P (Ej1

∧
. . .
∧
Ejr ) .

5 (Bukszár and Prekopa 2001)
6 (Prékopa 1988)
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Summary
▶ We presented an analytical method to compute upper and

lower bounds for the discrete-time collision probability of
motion plans.

▶ The bounds are computed using the closed-loop system
trajectory distribution of the system without making any
independence assumptions on the events of collision at
different time steps.

▶ Numerical validation demonstrates that our bounds are
less conservative than the Boole’s bound commonly used
in the literature and are cheaper in computation than the
Monte Carlo method.

Check out the paper for more details and results.

▶ Future work: Incorporation of the presented bounds in
the planning phase to generate risk-optimal trajectories.
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