

IFAC 2023

Upper and Lower Bounds for End-to-End Risks in Stochastic Robot Navigation

Apurva Patil Takashi Tanaka

- Background
- **Existing Approaches**
- **Problem Formulation**
- **Probability Inequalities**
- Closed-Loop Trajectory Distribution
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds
- Summary

Background

Existing Approaches

Problem Formulation

Probability Inequalities

Closed-Loop Trajectory Distribution

Computation of the Bounds

Simulation Results

Higher-Order Probability Bounds

Summary

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.

► Discrete-time end-to-end risk:

$$P(E) = P(\bigvee_{t=0}^{T} E_t), \text{ where } E_t := \mathbf{x}_t^{\text{sys}} \in \mathcal{X}^{\text{obs}}.$$

Background

- End-to-end risks in stochastic robot navigation
 - Characterize safety of the planned trajectories.
 - Plan risk optimal trajectories.

► Discrete-time end-to-end risk:

$$P(E) = P(\bigvee_{t=0}^{T} E_t), \text{ where } E_t := \mathbf{x}_t^{\text{sys}} \in \mathcal{X}^{\text{obs}}.$$

- Exact evaluation of the end-to-end risk P(E) is challenging
 - $\{E_t\}_{t=0}^T$ are statistically dependent events.
 - We derive upper and lower bounds using inequalities of Hunter, Kounias, Fréchet, and Dawson.

Background

Existing Approaches

- **Problem Formulation**
- **Probability Inequalities**
- Closed-Loop Trajectory Distribution
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds
- Summary

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and might underestimate the failure probability.

¹ (Janson, Schmerling, and Pavone 2018), (Blackmore, Ono, Bektassov, et al. 2010)

² (Strawser and B. Williams 2018)

³ (Blackmore, Ono, and B. C. Williams 2011), (Ono et al. 2015)

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and might underestimate the failure probability.
- Approximation of law of total probability ²

$$P\left(\bigvee_{t=0}^{T} E_{t}\right) \approx 1 - \prod_{t=0}^{T} P\left(E_{t}^{c} | E_{t-1}^{c}\right)$$

- Can result in overly conservative estimates or can underestimate the failure probability.

¹ (Janson, Schmerling, and Pavone 2018), (Blackmore, Ono, Bektassov, et al. 2010)

² (Strawser and B. Williams 2018)

³ (Blackmore, Ono, and B. C. Williams 2011), (Ono et al. 2015)

Existing Approaches

- Monte Carlo methods¹
 - Computationally expensive and might underestimate the failure probability.
- Approximation of law of total probability²

$$P\left(\bigvee_{t=0}^{T} E_{t}\right) \approx 1 - \prod_{t=0}^{T} P\left(E_{t}^{c} | E_{t-1}^{c}\right)$$

- Can result in overly conservative estimates or can underestimate the failure probability.

• Boole's inequality ³:
$$P\left(\bigvee_{t=0}^{T} E_t\right) \leq \sum_{t=0}^{T} P(E_t)$$

- Commonly used in risk-aware control problems due to its time-additivity.
- Ignores the dependency among events $\{E_t\}_{t=0}^{T}$, can result in overly conservative estimates.
- ¹ (Janson, Schmerling, and Pavone 2018), (Blackmore, Ono, Bektassov, et al. 2010)
- ² (Strawser and B. Williams 2018)
- ³ (Blackmore, Ono, and B. C. Williams 2011), (Ono et al. 2015)

- Background
- **Existing Approaches**
- **Problem Formulation**
- **Probability Inequalities**
- Closed-Loop Trajectory Distribution
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds
- Summary

Planned trajectory

- A finite sequences of positions $\{x_t^{\text{plan}} \in \mathcal{X}_{\text{free}}\}_{t=0}^{T}$ and control inputs $\{u_t^{\text{plan}} \in \mathbb{R}^m\}_{t=0}^{T-1}$ satisfying $x_{t+1}^{\text{plan}} = A_t x_t^{\text{plan}} + B_t u_t^{\text{plan}}.$

Planned trajectory

- A finite sequences of positions $\{x_t^{\text{plan}} \in \mathcal{X}_{\text{free}}\}_{t=0}^T$ and control inputs $\{u_t^{\text{plan}} \in \mathbb{R}^m\}_{t=0}^{T-1}$ satisfying $x_{t+1}^{\text{plan}} = A_t x_t^{\text{plan}} + B_t u_t^{\text{plan}}.$

Executed trajectory

$$\boldsymbol{x}_{t+1}^{\mathrm{sys}} = A_t \boldsymbol{x}_t^{\mathrm{sys}} + B_t \boldsymbol{u}_t^{\mathrm{sys}} + \boldsymbol{w}_t, \quad \boldsymbol{w}_t \sim \mathcal{N}\left(0, W_t\right)$$

Planned trajectory

- A finite sequences of positions $\{x_t^{\text{plan}} \in \mathcal{X}_{\text{free}}\}_{t=0}^{T}$ and control inputs $\{u_t^{\text{plan}} \in \mathbb{R}^m\}_{t=0}^{T-1}$ satisfying $x_{t+1}^{\text{plan}} = A_t x_t^{\text{plan}} + B_t u_t^{\text{plan}}.$

Executed trajectory

$$\begin{aligned} \mathbf{x}_{t+1}^{\text{sys}} &= A_t \mathbf{x}_t^{\text{sys}} + B_t \mathbf{u}_t^{\text{sys}} + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}\left(0, W_t\right) \\ \text{- Defining } \mathbf{x}_t &\coloneqq \mathbf{x}_t^{\text{sys}} - x_t^{\text{plan}} \text{ and } \mathbf{u}_t &\coloneqq \mathbf{u}_t^{\text{sys}} - u_t^{\text{plan}}, \text{ we get} \\ \mathbf{x}_{t+1} &= A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}\left(0, W_t\right), \end{aligned}$$

Planned trajectory

- A finite sequences of positions $\{x_t^{\text{plan}} \in \mathcal{X}_{\text{free}}\}_{t=0}^{T}$ and control inputs $\{u_t^{\text{plan}} \in \mathbb{R}^m\}_{t=0}^{T-1}$ satisfying $x_{t+1}^{\text{plan}} = A_t x_t^{\text{plan}} + B_t u_t^{\text{plan}}.$

Executed trajectory

$$\mathbf{x}_{t+1}^{\text{sys}} = A_t \mathbf{x}_t^{\text{sys}} + B_t \mathbf{u}_t^{\text{sys}} + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(0, W_t)$$

- Defining $\mathbf{x}_t \coloneqq \mathbf{x}_t^{\text{sys}} - \mathbf{x}_t^{\text{plan}}$ and $\mathbf{u}_t \coloneqq \mathbf{u}_t^{\text{sys}} - u_t^{\text{plan}}$, we get
 $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(0, W_t),$

Sensor model

$$\mathbf{y}_{t} = C_{t}\mathbf{x}_{t} + \mathbf{v}_{t}, \qquad \mathbf{v}_{t} \sim \mathcal{N}(0, V_{t})$$

Planned trajectory

- A finite sequences of positions $\{x_t^{\text{plan}} \in \mathcal{X}_{\text{free}}\}_{t=0}^{T}$ and control inputs $\{u_t^{\text{plan}} \in \mathbb{R}^m\}_{t=0}^{T-1}$ satisfying $x_{t+1}^{\text{plan}} = A_t x_t^{\text{plan}} + B_t u_t^{\text{plan}}.$

Executed trajectory

$$\mathbf{x}_{t+1}^{\text{sys}} = A_t \mathbf{x}_t^{\text{sys}} + B_t \mathbf{u}_t^{\text{sys}} + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(0, W_t)$$

- Defining $\mathbf{x}_t \coloneqq \mathbf{x}_t^{\text{sys}} - \mathbf{x}_t^{\text{plan}}$ and $\mathbf{u}_t \coloneqq \mathbf{u}_t^{\text{sys}} - u_t^{\text{plan}}$, we get
 $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(0, W_t),$

Sensor model

$$\boldsymbol{y}_{t} = C_{t}\boldsymbol{x}_{t} + \boldsymbol{v}_{t}, \qquad \boldsymbol{v}_{t} \sim \mathcal{N}\left(0, V_{t}\right)$$

► Discrete-time end-to-end risk: $P(E) = P(\bigvee_{t=0}^{T} E_t), \text{ where } E_t := \mathbf{x}_t^{\text{sys}} \in \mathcal{X}^{\text{obs}}.$

- Background
- **Existing Approaches**
- **Problem Formulation**
- Probability Inequalities
- **Closed-Loop Trajectory Distribution**
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds
- Summary

Define:

$$p_t \coloneqq P(E_t), \ p_{s,t} \coloneqq P(E_s \bigwedge E_t), \ S_1 \coloneqq \sum_{0 \le t \le T} p_t, \ S_2 \coloneqq \sum_{0 \le s < t \le T} p_{s,t}.$$

Define:

$$p_t \coloneqq P(E_t), \ p_{s,t} \coloneqq P(E_s \bigwedge E_t), \ S_1 \coloneqq \sum_{0 \le t \le T} p_t, \ S_2 \coloneqq \sum_{0 \le s < t \le T} p_{s,t}.$$

• Kwerel's upper bound: $P(E) \leq S_1 - \frac{2}{T+1}S_2$.

Define:

$$p_t \coloneqq P(E_t), \ p_{s,t} \coloneqq P(E_s \bigwedge E_t), \ S_1 \coloneqq \sum_{0 \le t \le T} p_t, \ S_2 \coloneqq \sum_{0 \le s < t \le T} p_{s,t}.$$

- Kwerel's upper bound: $P(E) \leq S_1 \frac{2}{T+1}S_2$.
- ► Kounias' upper bound: $P(E) \leq S_1 \max_{0 \leq s \leq T} \sum_{0 < t < T, t \neq s} p_{s,t}$.

Define:

$$p_t \coloneqq P(E_t), \ p_{s,t} \coloneqq P(E_s \bigwedge E_t), \ S_1 \coloneqq \sum_{0 \le t \le T} p_t, \ S_2 \coloneqq \sum_{0 \le s < t \le T} p_{s,t}.$$

- Kwerel's upper bound: $P(E) \leq S_1 \frac{2}{T+1}S_2$.
- Kounias' upper bound: $P(E) \leq S_1 \max_{0 \leq s \leq T} \sum_{0 \leq t \leq T, t \neq s} p_{s,t}$.
- ► Hunter's upper bound: $P(E) \leq S_1 \max_{\tau} \sum_{(s,t):e_{s,t} \in \tau} p_{s,t}$

where τ is a spanning tree of the graph whose vertices are $\{E_t\}_{t=0}^{T}$, with E_s and E_t joined by an edge $e_{s,t}$ if $E_s \bigwedge E_t \neq \emptyset$.

Define:

$$p_t \coloneqq P(E_t), \ p_{s,t} \coloneqq P(E_s \bigwedge E_t), \ S_1 \coloneqq \sum_{0 \le t \le T} p_t, \ S_2 \coloneqq \sum_{0 \le s < t \le T} p_{s,t}.$$

- Kwerel's upper bound: $P(E) \leq S_1 \frac{2}{T+1}S_2$.
- ► Kounias' upper bound: $P(E) \leq S_1 \max_{0 \leq s \leq T} \sum_{0 < t < T, t \neq s} p_{s,t}$.
- ► Hunter's upper bound: $P(E) \leq S_1 \max_{\tau} \sum_{(s,t):e_{s,t} \in \tau} p_{s,t}$

where τ is a spanning tree of the graph whose vertices are $\{E_t\}_{t=0}^T$, with E_s and E_t joined by an edge $e_{s,t}$ if $E_s \bigwedge E_t \neq \emptyset$.

Suboptimal Hunter's upper bound:

$$P(E) \leq S_1 - \sum_{1 \leq t \leq T} p_{t-1,t}.$$

Fréchet's lower bound: $P(E) \ge \max_{0 \le t \le T} p_t$.

- Fréchet's lower bound: $P(E) \ge \max_{0 \le t \le T} p_t$.
- ▶ Bonferroni's second-order lower bound: $P(E) \ge S_1 S_2$.

- Fréchet's lower bound: $P(E) \ge \max_{0 \le t \le T} p_t$.
- ▶ Bonferroni's second-order lower bound: $P(E) \ge S_1 S_2$.
- Dawson and Sankoff's lower bound: if $S_1 > 0$,

$$P(E) \geq \frac{2}{k+1}S_1 - \frac{2}{k(k+1)}S_2,$$

where k - 1 is the integer part of $2S_2/S_1$.

Background

Existing Approaches

Problem Formulation

Probability Inequalities

Closed-Loop Trajectory Distribution

Computation of the Bounds

Simulation Results

Higher-Order Probability Bounds

Summary

Trajectory Tracking Controller

Optimal controller for stochastic LQR 4:

$$\boldsymbol{u}_t = F_t \hat{\boldsymbol{x}}_{t|t}$$

 F_t are the LQR gains and $\hat{x}_{t|t}$ are the state estimates obtained by the Kalman filter.

^{4 (}Stengel 1994)

Trajectory Tracking Controller

Optimal controller for stochastic LQR 4:

$$\boldsymbol{u}_t = F_t \hat{\boldsymbol{x}}_{t|t}$$

 F_t are the LQR gains and $\hat{x}_{t|t}$ are the state estimates obtained by the Kalman filter.

► The *a priori* state estimates $\hat{x}_{t|t-1}$ and the *a posteriori* state estimates $\hat{x}_{t|t}$ evolve according to

$$\begin{aligned} \hat{x}_{t|t-1} &= A_{t-1} \hat{x}_{t-1|t-1} + B_{t-1} \boldsymbol{u}_{t-1}, \quad \hat{x}_{0|0} = 0 \\ \hat{x}_{t|t} &= \hat{x}_{t|t-1} + G_t \left(\boldsymbol{y}_t - C_t \hat{x}_{t|t-1} \right), \end{aligned}$$

where G_t are the Kalman gains.

^{4 (}Stengel 1994)

The state deviation x_t and its *a priori* estimate $\hat{x}_{t|t-1}$ jointly evolve as:

$$\overline{\mathbf{x}}_{t+1} = \overline{A}_t \overline{\mathbf{x}}_t + \overline{\mathbf{w}}_t, \quad \overline{\mathbf{w}}_t \sim \mathcal{N}\left(0, \overline{W}_t\right)$$
where $\overline{\mathbf{x}}_t \coloneqq \begin{bmatrix} \mathbf{x}_t \\ \hat{\mathbf{x}}_{t|t-1} \end{bmatrix}, \quad \overline{\mathbf{w}}_t \coloneqq \begin{bmatrix} B_t F_t G_t \mathbf{v}_t + \mathbf{w}_t \\ (A_t + B_t F_t) G_t \mathbf{v}_t \end{bmatrix},$

$$\overline{A}_t \coloneqq \begin{bmatrix} A_t + B_t F_t G_t C_t & B_t F_t (I - G_t C_t) \\ (A_t + B_t F_t) G_t C_t & (A_t + B_t F_t) (I - G_t C_t) \end{bmatrix},$$

$$\overline{W}_t \coloneqq \begin{bmatrix} B_t F_t G_t V_t G_t^\top F_t^\top B_t^\top + W_t & B_t F_t G_t V_t G_t^\top (A_t + B_t F_t)^T \\ (A_t + B_t F_t) G_t V_t^\top G_t^\top F_t^\top B_t^\top & (A_t + B_t F_t) G_t V_t G_t^\top (A_t + B_t F_t)^T \end{bmatrix}.$$

Stacking \overline{x}_t for all time steps, we get

$$\begin{split} \overline{\mathbf{x}}^{\mathrm{traj}} &= M \overline{\mathbf{x}}_0 + N \overline{\mathbf{w}}^{\mathrm{traj}}, \qquad \overline{\mathbf{w}}^{\mathrm{traj}} \sim \mathcal{N}\left(0, \operatorname{diag}_{0 \leq t \leq T-1} \overline{W}_t\right), \\ \text{where } \overline{\mathbf{x}}^{\mathrm{traj}} &\coloneqq \begin{bmatrix} \overline{\mathbf{x}}_0 \\ \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \\ \vdots \\ \overline{\mathbf{x}}_T \end{bmatrix}, \overline{\mathbf{w}}^{\mathrm{traj}} &\coloneqq \begin{bmatrix} \overline{\mathbf{w}}_0 \\ \overline{\mathbf{w}}_1 \\ \overline{\mathbf{w}}_2 \\ \vdots \\ \overline{\mathbf{w}}_{T-1} \end{bmatrix}, M \coloneqq \begin{bmatrix} I \\ \overline{A}_0 \\ \overline{A}_1 \overline{A}_0 \\ \vdots \\ \overline{A}_{T-1} \dots \overline{A}_0 \end{bmatrix}, \\ N &\coloneqq \begin{bmatrix} 0 & 0 & \dots & 0 \\ I & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \overline{A}_1 & I & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \overline{A}_{T-1} \dots \overline{A}_1 & \overline{A}_{T-1} \dots \overline{A}_2 & \dots & I \end{bmatrix}. \end{split}$$

Assuming $\overline{x}_0 = 0$, the distribution of $\overline{x}^{\text{traj}}$ can be written as

$$\overline{\mathbf{x}}^{\mathrm{traj}} \sim \mathcal{N}\left(0, \overline{X}^{\mathrm{traj}}\right), \quad \overline{X}^{\mathrm{traj}} = \mathcal{N}\left(\operatorname{diag}_{0 \leq t \leq T-1} \overline{W}_{t}\right) \mathcal{N}^{\top}.$$

Assuming $\overline{x}_0 = 0$, the distribution of $\overline{x}^{\text{traj}}$ can be written as

$$\overline{\mathbf{x}}^{\mathrm{traj}} \sim \mathcal{N}\left(0, \overline{X}^{\mathrm{traj}}\right), \quad \overline{X}^{\mathrm{traj}} = \mathcal{N}\left(\operatorname{diag}_{0 \leq t \leq T-1} \overline{W}_{t}\right) \mathcal{N}^{\top}.$$

• Defining $\mathbf{x}^{\text{traj}} := \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \dots & \mathbf{x}_T \end{bmatrix}, \mathbf{x}^{\text{traj}} \sim \mathcal{N}(0, X^{\text{traj}})$ where X^{traj} is obtained by marginalizing $\overline{X}^{\text{traj}}$.

Assuming $\overline{x}_0 = 0$, the distribution of $\overline{x}^{\text{traj}}$ can be written as

$$\overline{\mathbf{x}}^{\mathrm{traj}} \sim \mathcal{N}\left(0, \overline{X}^{\mathrm{traj}}\right), \quad \overline{X}^{\mathrm{traj}} = \mathcal{N}\left(\operatorname{diag}_{0 \leq t \leq T-1} \overline{W}_{t}\right) \mathcal{N}^{\top}.$$

• Defining $\mathbf{x}^{\text{traj}} := \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \dots & \mathbf{x}_T \end{bmatrix}, \mathbf{x}^{\text{traj}} \sim \mathcal{N}(0, X^{\text{traj}})$ where X^{traj} is obtained by marginalizing $\overline{X}^{\text{traj}}$.

End-to-end probability of failure:

$$P(E) = 1 - \int_{\mathcal{X}^{ ext{free}}} \mathcal{N}ig(0, X^{ ext{traj}}ig) \, dx^{ ext{traj}}.$$

Assuming $\overline{x}_0 = 0$, the distribution of $\overline{x}^{\text{traj}}$ can be written as

$$\overline{\mathbf{x}}^{\mathrm{traj}} \sim \mathcal{N}\left(0, \overline{X}^{\mathrm{traj}}\right), \quad \overline{X}^{\mathrm{traj}} = \mathcal{N}\left(\operatorname{diag}_{0 \leq t \leq T-1} \overline{W}_{t}\right) \mathcal{N}^{\top}.$$

• Defining $\mathbf{x}^{\text{traj}} := \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \dots & \mathbf{x}_T \end{bmatrix}^{\top}, \mathbf{x}^{\text{traj}} \sim \mathcal{N}(0, X^{\text{traj}})$ where X^{traj} is obtained by marginalizing $\overline{X}^{\text{traj}}$.

End-to-end probability of failure:

$$P(E) = 1 - \int_{\mathcal{X}^{ ext{free}}} \mathcal{N}(0, X^{ ext{traj}}) dx^{ ext{traj}}.$$

Evaluating the above integral on a high dimensional non-convex region is computationally expensive.

Background

Existing Approaches

Problem Formulation

Probability Inequalities

Closed-Loop Trajectory Distribution

Computation of the Bounds

Simulation Results

Higher-Order Probability Bounds

Summary

The main task in computing the probability bounds is to compute the univariate probabilities p_t , and bivariate joint probabilities $p_{s,t}$.

The main task in computing the probability bounds is to compute the univariate probabilities p_t, and bivariate joint probabilities p_{s,t}.

$$\begin{aligned} \mathbf{x}_{t}^{\text{sys}} &\sim \mathcal{N}\left(\mathbf{x}_{t}^{\text{plan}}, X_{t}\right) \\ \begin{bmatrix} \mathbf{x}_{s}^{\text{sys}} & \mathbf{x}_{t}^{\text{sys}} \end{bmatrix}^{\top} &\sim \mathcal{N}\left(\begin{bmatrix} x_{s}^{\text{plan}} x_{t}^{\text{plan}} \end{bmatrix}^{\top}, X_{st}\right) \end{aligned}$$

where X_t and X_{st} are obtained by marginalizing X^{traj} .

The main task in computing the probability bounds is to compute the univariate probabilities p_t, and bivariate joint probabilities p_{s,t}.

$$\begin{aligned} \mathbf{x}_{t}^{\text{sys}} &\sim \mathcal{N}\left(\mathbf{x}_{t}^{\text{plan}}, X_{t}\right) \\ \begin{bmatrix} \mathbf{x}_{s}^{\text{sys}} & \mathbf{x}_{t}^{\text{sys}} \end{bmatrix}^{\top} &\sim \mathcal{N}\left(\begin{bmatrix} x_{s}^{\text{plan}} x_{t}^{\text{plan}} \end{bmatrix}^{\top}, X_{st}\right) \end{aligned}$$

where X_t and X_{st} are obtained by marginalizing X^{traj} .

$$p_{t} = \int_{\mathcal{X}^{\text{obs}}} \mathcal{N}\left(x_{t}^{\text{plan}}, X_{t}\right) dx_{t}^{\text{sys}}$$
$$p_{s,t} = \int_{\mathcal{X}^{\text{obs}}} \int_{\mathcal{X}^{\text{obs}}} \mathcal{N}\left(\left[x_{s}^{\text{plan}} x_{t}^{\text{plan}}\right]^{\top}, X_{st}\right) dx_{s}^{\text{sys}} dx_{t}^{\text{sys}}$$

The main task in computing the probability bounds is to compute the univariate probabilities p_t, and bivariate joint probabilities p_{s,t}.

$$\begin{aligned} \mathbf{x}_{t}^{\text{sys}} &\sim \mathcal{N}\left(\mathbf{x}_{t}^{\text{plan}}, X_{t}\right) \\ \begin{bmatrix} \mathbf{x}_{s}^{\text{sys}} & \mathbf{x}_{t}^{\text{sys}} \end{bmatrix}^{\top} &\sim \mathcal{N}\left(\begin{bmatrix} x_{s}^{\text{plan}} x_{t}^{\text{plan}} \end{bmatrix}^{\top}, X_{st} \right) \end{aligned}$$

where X_t and X_{st} are obtained by marginalizing X^{traj} .

$$p_{t} = \int_{\mathcal{X}^{\text{obs}}} \mathcal{N}\left(x_{t}^{\text{plan}}, X_{t}\right) dx_{t}^{\text{sys}}$$
$$p_{s,t} = \int_{\mathcal{X}^{\text{obs}}} \int_{\mathcal{X}^{\text{obs}}} \mathcal{N}\left(\left[x_{s}^{\text{plan}} x_{t}^{\text{plan}}\right]^{\top}, X_{st}\right) dx_{s}^{\text{sys}} dx_{t}^{\text{sys}}$$

▶ In this work, we assume that the obstacles are convex polytopes and develop a formulation to compute p_t and $p_{s,t}$, numerically. Please refer to the paper for the details.

- Background
- **Existing Approaches**
- **Problem Formulation**
- **Probability Inequalities**
- Closed-Loop Trajectory Distribution
- Computation of the Bounds

Simulation Results

- Higher-Order Probability Bounds
- Summary

Simulation Results

Trajectories planned with the instantaneous safety

Pedram et al. 2021.

Simulation Results

Comparison of different risk estimates over 100 trajectories

Estimates	Mean Abs. Error	Avg. Time [s]
Monte Carlo	0	46.83
Upper bounds		
Boole	40.59	0.01
Kwerel	38.15	2.43
Kounias	13.34	2.42
Hunter	8.63	2.41
Hunter suboptimal	10.25	0.18
Lower bounds		
Bonferroni	54.88	2.44
Fréchet	40.08	0.01
Dawson	16.74	2.44

- Background
- **Existing Approaches**
- **Problem Formulation**
- **Probability Inequalities**
- **Closed-Loop Trajectory Distribution**
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds

Summary

Higher-Order Probability Bounds

- A third-order upper bound computed using the Cherry Trees approach 5
- Bounds higher than order 3 can be computed using the linear programming algorithms ⁶

▶ Bonferroni's
$$k^{th}$$
-order bound:
 $P(E) \le S_1 - S_2 + S_3 - \ldots - S_{k-1} + S_k$ if $k < T$ is odd
 $P(E) \ge S_1 - S_2 + S_3 - \ldots + S_{k-1} - S_k$ if $k < T$ is even
where $S_r = \sum_{\substack{0 \le j_1 < \ldots < j_r \le T}} P(E_{j_1} \land \ldots \land E_{j_r})$.

⁵ (Bukszár and Prekopa 2001)

⁶ (Prékopa 1988)

- Background
- **Existing Approaches**
- **Problem Formulation**
- **Probability Inequalities**
- **Closed-Loop Trajectory Distribution**
- Computation of the Bounds
- Simulation Results
- Higher-Order Probability Bounds

Summary

Summary

- We presented an analytical method to compute upper and lower bounds for the discrete-time collision probability of motion plans.
- The bounds are computed using the closed-loop system trajectory distribution of the system without making any independence assumptions on the events of collision at different time steps.
- Numerical validation demonstrates that our bounds are less conservative than the Boole's bound commonly used in the literature and are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

Summary

- We presented an analytical method to compute upper and lower bounds for the discrete-time collision probability of motion plans.
- The bounds are computed using the closed-loop system trajectory distribution of the system without making any independence assumptions on the events of collision at different time steps.
- Numerical validation demonstrates that our bounds are less conservative than the Boole's bound commonly used in the literature and are cheaper in computation than the Monte Carlo method.

Check out the paper for more details and results.

Future work: Incorporation of the presented bounds in the planning phase to generate risk-optimal trajectories.