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Abstract

Analytical Bounds for End-to-End Risks

in Stochastic Robot Navigation

Apurva Patil,
The University of Texas at Austin, 2024

SUPERVISORS: Takashi Tanaka, Dongmei “Maggie” Chen

In this report, we present analytical methods to estimate the collision proba-

bility of motion plans for autonomous agents with both discrete-time and continuous-

time dynamics operating under Gaussian uncertainties. Motion plans generated by

planning algorithms cannot be perfectly executed by autonomous agents in reality

due to the inherent uncertainties in the real world. Estimating end-to-end risk is

crucial to characterize the safety of trajectories and plan risk optimal trajectories. In

this report, we derive upper and lower bounds for end-to-end collision probability of

motion plans using results from probability theory. Using ground robot navigation

examples, we numerically demonstrate that our methods are considerably faster than

the näıve Monte Carlo sampling method and the proposed bounds are significantly

less conservative than Boole’s bound commonly used in the literature.
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Chapter 1: Introduction

Motion plans for mobile robots in obstacle-filled environments can be gener-

ated by autonomous trajectory planning algorithms LaValle (2006). In reality, due

to the presence of uncertainties, the robots cannot follow the planned trajectories

perfectly, and collisions with obstacles occur with a non-zero probability, in general.

To address this issue, risk-aware motion planning has received considerable attention

over the years (e.g., Strawser and Williams (2018)). Optimal planning under set-

bounded uncertainty provides some solutions against worst-case disturbances (e.g.,

Majumdar and Tedrake (2013)). However, in many cases, modeling uncertainties

with unbounded (e.g. Gaussian) distributions has a number of advantages over a set-

bounded approach Blackmore et al. (2011). In the case of unbounded uncertainties,

it is generally difficult to guarantee safety against all realizations of noise. This moti-

vates for an efficient risk estimation technique that can both characterize the safety of

trajectories and be embedded in the planning algorithms to allow explicit trade-offs

between control optimality and safety. In this report, we develop analytical frame-

works of end-to-end risk estimation of motion plans for autonomous agents, with both

discrete-time and continuous-time dynamics operating under Gaussian uncertainty.

1.1 Discrete-Time Dynamics Systems

We assume that a planned trajectory in a known configuration space is given

and a robot follows this trajectory in finite time T . If Et represents an event that

the robot collides with the obstacles at time step t, then the end-to-end probability

of failure can be formulated as P

(
T∨
t=0

Et

)
. In general, {Et}Tt=0 are statistically de-

pendent events; hence the exact evaluation of this probability is challenging. In this

report, we derive upper and lower bounds for the end-to-end failure probability using

inequalities from probability theory.
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Monte Carlo and other sampling-based methods (e.g., Blackmore et al. (2010),

Janson et al. (2018)) provide estimates of end-to-end failure probability by computing

the ratio of the number of simulated executions that collide with obstacles. However,

these methods are often expensive in computation due to the need for a large number

of simulation runs to obtain reliable estimates. Moreover, they provide no guarantee

that they will not underestimate the failure probability. Various analytical approaches

also have been proposed in the literature. Using the law of total probability, we can

write

P

(
T∨
t=0

Et

)
= 1−

T∏
t=0

P
(
Ec

t |Ec
t−1, . . . , E

c
0

)
(1.1)

where Ec
t represents the event that the robot is collision-free at time step t. It

is challenging to compute (1.1) exactly because it requires evaluating integrals of

multivariate distributions over non-convex regions. One approach to estimate (1.1) is

to assume that the event Et is independent of other events or depends only on Et−1

(Strawser and Williams (2018)), and subsequently approximate (1.1) as 1−
T∏
t=0

P (Ec
t )

or 1 −
T∏
t=0

P
(
Ec

t |Ec
t−1

)
, respectively. However, these assumptions do not hold in

general, and can result in overly conservative estimates or can even underestimate

the failure probability.

Another popular approach is to use Boole’s inequality to compute an upper

bound to the end-to-end risk (Blackmore et al. (2011), Ono et al. (2015)). The

inequality is given as

P

(
T∨
t=0

Et

)
≤

T∑
t=0

P (Et) . (1.2)

This bound is highly convenient due to its time-additive structure. The time-additivity

allows the use of dynamic programming; hence (1.2) is commonly used in the risk-

aware control problems (Frey et al. (2020)). However, this bound ignores the depen-

dency among events {Et}Tt=0 and can result in overly conservative estimates, especially

as the time discretization is refined. In contrast to the previous approaches, an ap-

proach presented in Patil et al. (2012) accounts for the fact that the distribution of the
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state at each time step along the trajectory is conditioned on the previous time steps

being collision-free. It truncates the estimated distributions of the robot’s positions

with respect to obstacles and approximates the truncated distributions as Gaussians.

However, the Gaussianity is inexact and this approximation leads to an estimate that

might not remain statistically consistent (Frey et al. (2020)).

1.1.1 Contributions

The contributions of our work are as follows: We account for the fact that the

events of collision at different time-steps {Et}Tt=0 are statistically dependent. Unlike

Patil et al. (2012), we compute the joint distribution of the entire robot trajectory

without attempting to approximate the conditional state distributions. Using this

joint trajectory distribution and leveraging inequalities from probability theory, we

derive both upper and lower bounds for the end-to-end probability of failure. Our up-

per bounds are considerably tighter than the estimates obtained by Boole’s inequality

commonly used in the literature. The lower bounds, on the other hand, are useful

for predicting how conservative the computed upper bounds are. Using a simulation

study, we show the validity of our bounds. We also study the performance of our

discrete-time bounds in the continuous-time setting as the underlying discretization

is refined.

1.2 Continuous-Time Dynamics System

We also develop an analytical method of continuous-time risk estimation for

autonomous agents with linear controlled Itô dynamics of the form (2.23). We assume

that a planned trajectory with a finite length in a known configuration space X ⊆ Rn

is given and a robot tracks this trajectory in finite time T . If xxxsys(t) ∈ X represents the

robot’s position at time t, and Xobs ⊂ X is the obstacle region, then the continuous-
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time end-to-end risk R in the navigation of the given trajectory can be written as

R = P

 ⋃
t∈[0,T ]

xxxsys(t) ∈ Xobs

 . (1.3)

Unfortunately, exact evaluation of (1.3) is a challenging task because all the states

xxxsys(t) across the time horizon [0, T ] are correlated with each other. In this report,

we derive two upper bounds for R by leveraging properties of Brownian motion (also

called a Wiener process) as well as Boole and Hunter’s inequalities from probability

theory.

Monte Carlo and other sampling based methods Blackmore et al. (2010), Jan-

son et al. (2018) provide accurate estimates of (1.3) by computing the ratio of the

number of simulated executions that collide with obstacles. However, these methods

are often computationally expensive due to the need for a large number of simu-

lation runs to obtain reliable estimates and are cumbersome to embed in planning

algorithms.

The discrete-time risk estimation methods compute risks at the discretized

time steps ti, i = 0, 1, . . . , N , and approximate the probability in (1.3) by

R ≈ P

(
N⋃
i=0

xxxsys(ti) ∈ Xobs

)
. (1.4)

Since the states {xxxsys(ti)}i=0,1,...,N are correlated with each other, evaluating the joint

probability (1.4) exactly is computationally expensive Patil and Tanaka (2021). Sev-

eral approaches have been proposed in the literature to upper bound this joint prob-

ability Blackmore et al. (2011), Patil and Tanaka (2021), Ono et al. (2015). The

commonly used approach is to use Boole’s inequality (a.k.a. union bound) which

states that for any number of events Ej, we have

P

(
N⋃
j=1

Ej

)
≤

N∑
j=1

P (Ej) . (1.5)
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Using this inequality, the probability in (1.4) can be decomposed the over timesteps

as Blackmore et al. (2011):

R ≤
N∑
i=0

P (xxxsys(ti) ∈ Xobs) . (1.6)

While the discrete-time risk estimation approaches can be applied for continuous-time

systems, their performance is highly sensitive to the chosen time discretization. They

may underestimate the risk when the sampling rate is low or may produce severely

conservative estimates when the sampling rate is high Patil and Tanaka (2021).

Various continuous-time risk estimation approaches also have been proposed

in the literature such as the approaches based on stochastic control barrier functions

Santoyo et al. (2021), Yaghoubi et al. (2020), cumulative lyapunov exponent Oguri

et al. (2019), and first-exit times Shah et al. (2011), Frey et al. (2020), Ariu et al.

(2017), Chern et al. (2021). The analyses presented by Shah et al. Shah et al.

(2011) and Chern et al. Chern et al. (2021) give the exact continuous-time collision

probability as the solution to a partial differential equation (PDE). Shah et al. Shah

et al. (2011) presents an analytic solution of this PDE for a simple case; namely that

of a constrained spherical environment with no internal obstacles. However, such a

closed-form solution is generally not tractable for complicated configuration spaces.

Frey et al. Frey et al. (2020) uses an interval-based integration scheme to approximate

the collision probability by leveraging classical results in the study of first-exit times.

Ariu et al. Ariu et al. (2017) proposes an upper-bound for the continuous-time risk

using the reflection principle of Brownian motion and Boole’s inequality (1.5). In

this report, we extend the results presented in Ariu et al. (2017) and derive tighter

continuous-time risk bounds.

1.2.1 Contributions

The contributions of this work are summarized as follows: We first use the

Markov property of Brownian motion, and tighten the risk bound derived in Ariu
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et al. (2017). We then further reduce the conservatism of this bound by leveraging

Hunter’s inequality of the probability of union of events. Both our bounds possess the

time-additive structure required in several optimal control techniques (e.g. dynamic

programming) Ono et al. (2015), Van Den Berg et al. (2012), making these bounds

useful for risk-aware motion planning. Finally, using a ground robot navigation ex-

ample, we demonstrate that our method requires considerably less computation time

than the näıve Monte Carlo sampling method. We also show that compared to the

discrete-time risk bound (1.6), our bounds are tighter, and at the same time ensure

conservatism (i.e. safety).
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Chapter 2: Analytical Bounds for Discrete-Time

End-to-End Risks in Stochastic Robot Navigation

In this Chapter, we present an analytical method to estimate the collision prob-

ability of motion plans for autonomous agents with discrete-time dynamics operating

under Gaussian motion and sensing uncertainty. Motion plans generated by planning

algorithms cannot be perfectly executed by autonomous agents in reality due to the

inherent uncertainties in the real world. Estimating end-to-end collision probability

is crucial to characterize the safety of trajectories and plan risk-optimal trajectories.

In this work, we derive upper and lower bounds for end-to-end collision probability of

motion plans using results from probability theory. Using a ground robot navigation

example, we demonstrate that our method is considerably faster than the näıve Monte

Carlo sampling method and the proposed bounds are significantly less conservative

than Boole’s bound commonly used in the literature.

2.1 Preliminaries

In this section, we formulate the risk analysis problem and review probability

inequalities.

2.1.1 Problem Formulation

Suppose X ⊆ Rd, d ≥ 2 is a known configuration space. Let Xobs ⊂ X,

Xfree = X\Xobs and Xgoal ⊂ Xfree be the obstacle region, obstacle-free region, and goal

region, respectively. Given an initial position xplan
0 ∈ Xfree of the robot, a planning

algorithm generates a trajectory {xplan
t }Tt=0 by designing a finite, optimal sequence of

control inputs {uplan
t }T−1

t=0 such that xplan
T ∈ Xgoal. We call the finite sequence {xplan

t }Tt=0

the planned trajectory, satisfying

xplan
t+1 = Atx

plan
t +Btu

plan
t , t ∈ {0, 1, . . . , T − 1}.
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Let xxxsys
t be the actual position of the robot during the execution of the plan and uuusys

t

be the control input applied at time step t. We call the finite sequence {xxxsys
t }Tt=0 the

executed trajectory. Suppose the executed trajectory satisfies

xxxsys
t+1 = Atxxx

sys
t +Btuuu

sys
t +wwwt, xxxsys

0 = xplan
0 (2.1)

where wwwt ∼ N (0,Wt) is a Gaussian white noise that models the motion uncertainty.

Suppose xxxt := xxxsys
t − xplan

t represents the deviation of the robot from the planned

trajectory and uuut := uuusys
t − uplan

t be the control input deviation. Then, we can write

xxxt+1 = Atxxxt +Btuuut +wwwt, xxx0 = 0, wwwt ∼ N (0,Wt) (2.2)

Remark 1. For the analysis purpose, in this report, the system dynamics (2.1) are

assumed to be linear. However, the presented methodology of risk estimation can

also be applied to nonlinear Gaussian system by linearizing it around the nominal

trajectory {xplan
t , uplan

t }Tt=0.

Suppose the sensor model is given as

yyyt = Ctxxxt + vvvt, vvvt ∼ N (0, Vt) , (2.3)

where vvvt is a Gaussian white noise that models the noise in the measurements. If Et

represents the event that the robot collides with the obstacles at time step t, defining

E :=
T∨
t=0

Et, the end-to-end probability of failure in the trajectory tracking phase can

be formulated as

P

(
T∨
t=0

xxxsys
t ∈ Xobs

)
= P

(
T∨
t=0

Et

)
= P (E) . (2.4)

2.1.2 Probability Bounds

In this section, we summarize first and second-order probability inequalities.

These inequalities require computation of the terms P (Et) and P (Es

∧
Et), which
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are often easy to calculate. Define:

pt := P (Et) , ps,t := P
(
Es

∧
Et

)
,

S1 :=
∑

0≤t≤T

pt, S2 :=
∑

0≤s<t≤T

ps,t. (2.5)

Following are the upper bounds for P (E):

• Kwerel’s upper bound (Kwerel (1975)):

P (E) ≤ S1 −
2

T + 1
S2. (2.6)

This is the closest upper bound for the probability of the union of events based

on knowledge of S1 and S2.

• Kounias’ upper bound:

P (E) ≤ S1 − max
0≤s≤T

∑
0≤t≤T, t̸=s

ps,t. (2.7)

• Hunter’s upper bound:

P (E) ≤ S1 −max
τ

∑
(s,t):es,t∈τ

ps,t. (2.8)

Here, τ is a spanning tree of the graph whose vertices are E0, E1, . . . , ET , with

Es and Et joined by an edge es,t if Es

∧
Et ̸= ∅. Kruskal’s minimum spanning

tree algorithm (Kruskal (1956)) can be used to find the τ which attains the

maximum of
∑

ps,t. In this work, we also compute a suboptimal Hunter’s

bound by choosing a particular spanning τ having edges e0,1, e1,2, . . . , eT−1,T :

P (E) ≤ S1 −
∑

1≤t≤T

pt−1,t. (2.9)
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Remark 2. Compared to (2.8), the bound in (2.9) is cheaper in computation. It

also possesses the time-additive structure similar to Boole’s bound (1.2); hence,

this bound could be embedded in the risk-aware motion planning framework.

Following are the lower bounds for P (E):

• Fréchet’s lower bound: P (E) ≥ max
0≤t≤T

pt.

• Bonferroni’s second-order lower bound (Prékopa (1988)):

P (E) ≥ S1 − S2. (2.10)

• Dawson and Sankoff’s lower bound (Dawson and Sankoff (1967)): If S1 > 0,

P (E) ≥ 2

k + 1
S1 −

2

k (k + 1)
S2,

where k − 1 is the integer part of 2S2/S1. It is the closest lower bound for the

probability of union of events based on the knowledge of S1 and S2 (Galambos

(1977)).

2.2 End-to-End Risk Analysis

In this section, we present a method to estimate the end-to-end risks based on

the bounds presented in Section 2.1.2.

2.2.1 Distribution of the Closed-Loop Trajectory

During an actual execution of the planned trajectory, the robot will likely

deviate from the plan due to model uncertainties and external disturbances. In order

to compensate for these uncertainties, we design a trajectory tracking controller using

a linear feedback policy and Kalman filter (Stengel (1994)). It is well-known that the

optimal state feedback controller for stochastic linear quadratic regulator (LQR) is

given by

uuut = Ftx̂xxt|t, t ∈ {0, 1, . . . , T − 1}, (2.11)
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where Ft are the LQR gains and x̂xxt|t are the state estimates based on the measurements

{yyys}ts=0. The a priori state estimates x̂xxt|t−1 and the a posteriori state estimates x̂xxt|t

evolve according to

x̂xxt|t−1 = At−1x̂xxt−1|t−1 +Bt−1uuut−1, x̂0|0 = 0

x̂xxt|t = x̂xxt|t−1 +Gt

(
yyyt − Ctx̂xxt|t−1

)
,

(2.12)

where Gt are the Kalman gains. See Stengel (1994) for the details of the derivation

of (2.11) and (2.12). Combining (2.2), (2.11) and (2.12), the state deviation xxxt and

its a priori estimate x̂xxt|t−1 jointly evolve as:

xxxt+1 = Atxxxt +wwwt, wwwt ∼ N
(
0,W t

)
where

xxxt :=

[
xxxt

x̂xxt|t−1

]
, wwwt :=

[
BtFtGtvvvt +wwwt

(At +BtFt)Gtvvvt

]
,

At :=

[
At +BtFtGtCt BtFt (I −GtCt)
(At +BtFt)GtCt (At +BtFt) (I −GtCt)

]
,

W t :=

[
BtFtGtVtG

⊤
tF

⊤
t B

⊤
t +Wt BtFtGtVtG

⊤
t (At+BtFt)

T

(At+BtFt)GtV
⊤
t G

⊤
tF

⊤
t B

⊤
t (At+BtFt)GtVtG

⊤
t (At+BtFt)

T

]
.

Now, we stack xxxt for all time steps, and via recursive substitution obtain

xxxtraj = Mx0 +Nwwwtraj, wwwtraj ∼ N

(
0, diag

0≤t≤T−1
W t

)
,

where

xxxtraj :=


xxx0

xxx1

xxx2
...
xxxT

 ,wwwtraj :=


www0

www1

www2
...

wwwT−1

 ,M :=


I
A0

A1A0
...

AT−1 . . . A0

 ,

N :=


0 0 . . . 0
I 0 . . . 0
A1 I . . . 0
...

...
. . .

...
AT−1 . . . A1 AT−1 . . . A2 . . . I

 .
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Assuming x0 = 0, the distribution of xxxtraj can be written as

xxxtraj∼N
(
0, X

traj
)
, X

traj
=N

(
diag

0≤t≤T−1
W t

)
N⊤.

We can now obtain the distribution of the closed-loop trajectory xxxtraj :=
[
xxx0 xxx1 . . . xxxT

]⊤
by marginalizing X

traj
. Suppose µxxxtraj

(
xtraj

)
denotes the distribution of the closed-

loop trajectory, then the end-to-end probability of failure (2.4) can be calculated

exactly by integrating µxxxtraj

(
xtraj

)
over the obstacle-free region Xfree as

P (E) = 1−
∫
Xfree

µxxxtraj

(
xtraj

)
dxtraj. (2.13)

However, Xfree can possibly be a nonconvex region, and as stated earlier, obtaining

an integral in a high dimensional space over a non-convex region is a computationally

expensive problem. Therefore, we make use of the probability inequalities listed in

Section 2.1.2 to obtain bounds for the end-to-end probability of failure (2.4).

2.2.2 Computation of the Bounds

The main task in evaluating the bounds presented in Section 2.1.2 is to com-

pute the univariate probabilities pt, and bivariate joint probabilities ps,t. These can

be computed from the distribution of xxxsys
t and

[
xxxsys
s xxxsys

t

]⊤
. Using the distribution

of the closed loop trajectory, we can obtain the distributions of xxxsys
t and

[
xxxsys
s xxxsys

t

]⊤
as

µxxxsys
t

(xsys
t ) = N

(
xplan
t , Xt

)
µxxxsys

s xxxsys
t

(xsys
s , xsys

t ) = N
([

xplan
s xplan

t

]⊤
, Xst

)
where Xt and Xst are obtained by marginalizing X

traj
. Now, pt and ps,t can be

evaluated as

pt=

∫
Xobs

µxxxsys
t

(xsys
t ) dxsys

t , (2.14)
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Figure 2.1: A polytopic obstacle, Xobsl composed of five linear constraints (facets).
For notational compactness, the subscript l is removed from ai,l, bi,l and hsys

i,l .

ps,t=

∫
Xobs

∫
Xobs

µxxxsys
s xxxsys

t
(xsys

s , xsys
t ) dxsys

s dxsys
t . (2.15)

In this report, we assume that the obstacles are d− dimensional convex polytopes and

develop a formulation to compute pt and ps,t numerically. Suppose the obstacle region

Xobs contains L disjoint convex polytopes and the lth polytope Xobs
l is represented by

a conjunction of Il linear constraints as follows:

Xobs
l =

Il∧
i=1

{
x ∈ Rd : a⊤i,lx ≥ bi,l

}
, l ∈ {1, 2, . . . , L}. (2.16)

The vector ai,l is the unit normal of the facet i of the polytope l, pointing inside the

polytope as shown in Figure 2.1. Let hhhsys
i,l be a univariate random variable representing

the perpendicular distance between the facet i of the polytope l and xxxsys
t as shown in

Figure 2.1. It can be shown that hhhsys
i,l ∼ N

(
hplan
i,l , Hi,l

)
where hplan

i,l := a⊤i,lx
plan
t − bi,l

and Hi,l := a⊤i,lXtai,l.
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2.2.2.1 Computation of pt.

We can write pt as

pt =
L∑
l=1

pt,l, pt,l = P
(
xxxsys
t ∈ Xobs

l

)
. (2.17)

Using (2.16), pt,l can be written as

pt,l = P

(
Il∧
i=1

a⊤i,lxxx
sys
t ≥ bi,l

)
= P

(
Il∧
i=1

hhhsys
i,l ≥ 0

)
.

Defining, al =
[
a1,l a2,l . . . aIl,l

]
, hhhsys

l =
[
hhhsys
1,l hhhsys

2,l . . . hhhsys
Il,l

]⊤
, we obtain the distri-

bution of hhhsys
l as µhhhsys

l
(hsys

l ) = N
(
hplan
l , Hl

)
, where

hplan
l :=

[
hplan
1,l hplan

2,l . . . hplan
Il,l

]⊤
, Hl := a⊤l Xtal.

Therefore, pt,l can be computed as

pt,l =

∫ ∞

0

µhhhsys
l

(hsys
l ) dhsys

l . (2.18)

In this work, MATLAB’s mvncdf function is utilized for computing (2.18) numerically.

2.2.2.2 Computation of ps,t.

Similar to (2.17), we write ps,t as

ps,t =
L∑
l=1

L∑
m=1

pst,lm,

where

pst,lm = P
[(
xxxsys
s ∈ Xobs

l

)∧(
xxxsys
t ∈ Xobs

m

)]
. (2.19)

Notice that (2.19) can be written as

pst,lm= P

[(
Il∧
i=1

hhhsys
i,l ≥ 0

)∧(
Im∧
i=1

hhhsys
i,m ≥ 0

)]
. (2.20)
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Defining Kss := Xs, Ktt := Xt, Kst := cov (xxxsys
s ,xxxsys

t ) ,

µhhhsys
l hhhsys

m
(hsys

l , hsys
m ) = N

([
hplan
l hplan

m

]⊤
, Hlm

)
where

Hlm :=

[
a⊤l Kssal a⊤l Kstam
a⊤mK

⊤
stal a⊤mKttam

]
.

Therefore, pst,lm can be computed as

pst,lm =

∫ ∞

0

∫ ∞

0

µhhhsys
l hhhsys

m
(hsys

l , hsys
m ) dhsys

l dhsys
m . (2.21)

MATLAB’s mvncdf function can be utilized for computing (2.21) numerically.

2.3 Simulation Results

In this section, we demonstrate, in simulation, the validity of our bounds for

the end-to-end risks. The configuration space is X = [0, 1] × [0, 1] and the planned

trajectory is assumed to satisfy

xplan
t+1 = xplan

t + ut, t ∈ {0, 1, . . . , T − 1}.

The executed trajectory {xxxsys
t }Tt=0 satisfies the linearized robot dynamics,

xxxsys
t+1 = xxxsys

t + uuusys
t +wwwt, xxxsys

0 = xplan
0 (2.22)

where wwwt ∼ N (0,Wt), Wt = ∥xplan
t+1 −xplan

t ∥Z, with Z = 10−3× I (I is a 2× 2 identity

matrix). (2.22) is a natural model for ground robots whose location uncertainty grows

linearly with the distance traveled. uuusys
t is computed using the state feedback policy,

as explained in Section 2.2.1. We demonstrate two experiments:

2.3.0.1 Experiment 1.

In this experiment, we plan trajectories using the algorithm in Pedram et al.

(2021). This algorithm plans trajectories via RRT* with the instantaneous safety

criterion (i.e., at every time step, the confidence ellipse with a fixed safety level is
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collision-free). For a given configuration space, four planned trajectories with 25%,

50%, 75%, and 99% instantaneous safety levels are shown in Figure 2.2 and our bounds

for the end-to-end failure probabilities vs instantaneous safety levels are plotted in

Figure 2.3. We validate our bounds by comparing them with the failure probabilities
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Figure 2.2: Trajectories planned with the instantaneous safety criterion. Trajectories
are shown with (a) 25%, (b) 50%, (c) 75% and (d) 99% confidence ellipses.

computed using 105 Monte Carlo simulations (shown in black). Bonferroni’s second-

order lower bounds (shown with red dashed line) are trivial for all the paths in this

example. As evident from the graph, Hunter’s upper bound or its suboptimal version

and Dawson and Sankoff’s lower bound together provide close approximation to the

Monte Carlo estimates of the end-to-end probability of failure. The graph shows that
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the bounds presented in this work are significantly less conservative than Boole’s

bound (shown in solid green).
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Figure 2.3: Upper (UB) and lower bounds (LB) of the end-to-end probabilities of
failure for the trajectories with different instantaneous safety levels.

2.3.0.2 Experiment 2.

In this experiment, we demonstrate a larger statistical evaluation over 100 tra-

jectories planned using RRT* (Karaman and Frazzoli (2011)) in randomly-generated

environments (random initial, goal and obstacle positions). These trajectories are

nominally safe i.e., only the planned positions {xplan
t }Tt=0 are ensured to be collision-

free. Table 2.1 compares the mean absolute errors of different bounds with respect

to 105 Monte Carlo simulations. The computation times for our MATLAB imple-

mentation are also reported. From the data presented, we can draw the following

conclusions. First, the bounds presented in this work require significantly less com-

putation time as compared to the Monte Carlo method. Second, our upper bounds

provide considerably tighter estimates than Boole’s bound at the expense of some

additional computational overhead. Dawson and Hunter’s estimates provide respec-
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Table 2.1: Comparison of different bounds

Estimates Mean Abs. Error Avg. Time [s]
Monte Carlo 0 46.83
Upper bounds

Boole 40.59 0.01
Kwerel 38.15 2.43
Kounias 13.34 2.42
Hunter 8.63 2.41

Hunter suboptimal 10.25 0.18
Lower bounds
Bonferroni 54.88 2.44
Fréchet 40.08 0.01
Dawson 16.74 2.44

tively the best lower and upper bounds of risk among all. Finally, Hunter’s subopti-

mal bound even though slightly more conservative, is computationally cheaper than

Hunter’s bound. As it also possesses the time-additive structure, this bound could

be embedded in the risk-aware motion planning framework.

2.4 Discussion

2.4.1 Risk Bounds for Continuous-Time Systems

Although our results so far are restricted to discrete-time systems, in prac-

tice we are often interested in the safety of continuous-time systems. Consider a

continuous-time robot dynamics governed by the following Itô process for t ∈ [0, T ]:

dxxxsys(t) = vvvsys(t)dt+R
1
2 (t)dbbb(t), xxxsys(0) = xplan

0 (2.23)

where vvvsys(t) is the velocity input command, bbb(t) is the d-dimensional standard Brow-

nian motion, and R(t) is given positive definite matrix for all t ∈ [0, T ]. Suppose the

time horizon [0, T ] is discretized in n time steps. Let T = (0 = t0 < t1 < . . . < tn = T )

be a partition of the time horizon, and ∆tj = tj+1 − tj. Time-discretization of (2.23)

24



under T based on Euler-Maruyama discretization (Kloeden and Platen (1992)) yields:

xxxsys
tj+1

= xxxsys
tj + uuusys

tj +wwwtj xxxsys
0 = xplan

0 (2.24)

where uuusys
tj = vvvsystj ∆tj and wwwtj ∼ N

(
0,∆tjRtj

)
. As we refine the time discretization

of [0, T ] by increasing n, the discrete-time approximation (2.24) of the continuous-

time system (2.23) becomes more accurate. Therefore, it is of our natural interest

to study the impact of increased sampling rates on the aforementioned discrete-time

risk bounds and how they can be used to imply the safety of continuous-time sys-

tems. Consider the configuration space and planned trajectories from Experiment 1

of Section 2.3. In (2.24), if we choose Rtj =
∥xplan

tj+1−xplan
tj ∥

∆tj
× 10−3I (I is an identity

matrix), we retrieve the same discrete-time model as (2.22). For this system, we plot

in Figure 2.4, 2.5 and 2.6 the probability bounds of Boole, suboptimal Hunter, and

Dawson, respectively, at increasing rate of time discretization n. The probabilities

obtained using Monte Carlo simulations for a high rate of time discretization (time

steps n = 206) are plotted in black, in all three figures, and are assumed to be the

ground truths of continuous-time risks. Figure 2.6 shows that Dawson and Sankoff’s

lower bound becomes tighter with the increase in the sampling rate. Similarly, it can

be shown that Fréchet’s bound also becomes tighter at the higher sampling rates.

Note that the discrete-time lower bounds at all rates of time discretization are valid

lower bounds for the continuous-time risks, whereas the upper bounds for a lower

rate of time discretization might underestimate the continuous-time risks (see the

suboptimal Hunter’s bound at time steps 30 in Figure 2.5).

Figure 2.4 and 2.5 demonstrate that Boole’s and Hunter’s suboptimal upper

bounds become less tight with the increase in the sampling rate. However, there is a

significant difference in the rates at which they lose tightness. Boole’s bound quickly

diverges to the trivial probability of 1 as the sampling rate is increased, unlike the

suboptimal Hunter’s bound. It can be shown that Hunter’s and Kounias’ bounds also

lose tightness at the higher sampling rates but they still perform better than Boole’s

bound. More investigation and comparison of our bounds at the high sampling rates
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with the continuous-time risk estimates computed in the existing literature (e.g., Patil

and Tanaka (2022), Patil et al. (2022)) are left for the future work.
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Figure 2.4: Boole’s upper bounds of end-to-end probabilities of failure for different
sampling rates.
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Figure 2.5: Hunter’s suboptimal upper bounds of end-to-end probabilities of failure
for different sampling rates.

2.4.2 Higher-Order Probability Bounds

In this work, we have implemented first and second-order probability bounds.

The question naturally arises whether we can consider bounds of order higher than
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Figure 2.6: Dawson and Sankoff’s lower bounds of end-to-end probabilities of failure
for different sampling rates.

two. The classical inclusion-exclusion principle states that

P (E) = S1 − S2 + S3 − S4 + . . .+ (−1)T ST+1, (2.25)

where Sr, 1 ≤ r ≤ T + 1, is defined as Sr :=
∑

0≤j1<...<jr≤T

P (Ej1

∧
. . .
∧
Ejr) . The sum

of the first r terms on the right side of (2.25) provides an upper bound to P (E)

when r is odd and a lower bound when r is even, producing Bonferroni’s rth-order

bound. It is generally not true that Bonferroni’s bounds increase in sharpness with

the order (Schwager (1984)). Hence, Bonferroni’s higher-order inequalities might

not give tighter bounds than the ones considered in this work. A third-order upper

bound computed using the Cherry Trees approach (Bukszár and Prekopa (2001)) can

be tighter than Hunter’s upper bound. Tighter higher-order upper and lower bounds

can be computed using the linear programming algorithms (Prékopa (1988)). Of

course, higher-order bounds are associated with higher computational complexities.

2.5 Conclusion

In this work, we presented an analytical method to compute upper and lower

bounds for the collision probability of motion plans for systems with discrete-time
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Gaussian dynamics. We made no independence assumptions on the events of collision

at different time steps and computed the joint distribution of the entire robot trajec-

tory. Using this joint trajectory distribution, we derived less conservative bounds for

the failure probability. It was also demonstrated that the presented approach is con-

siderably faster than the Monte Carlo sampling method. The future work includes

the incorporation of these bounds in planning algorithms to generate risk-optimal

trajectories. We also plan to conduct risk analysis for general robot dynamics that

do not operate under Gaussian noises.
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Chapter 3: Analytical Bounds for

Continuous-Time End-to-End Risks in Stochastic

Robot Navigation

In this Chapter, we present an analytical method to estimate the continuous-

time collision probability of motion plans for autonomous agents with linear controlled

Itô dynamics. Motion plans generated by planning algorithms cannot be perfectly

executed by autonomous agents in reality due to the inherent uncertainties in the real

world. Estimating end-to-end risk is crucial to characterize the safety of trajectories

and plan risk optimal trajectories. In this Chapter, we derive upper bounds for the

continuous-time risk in stochastic robot navigation using the properties of Brownian

motion as well as Boole and Hunter’s inequalities from probability theory. Using a

ground robot navigation example, we numerically demonstrate that our method is

considerably faster than the näıve Monte Carlo sampling method and the proposed

bounds perform better than the discrete-time risk bounds.

3.1 Preliminaries and Problem Statement

3.1.1 Planned Trajectory

Let Xfree = X\Xobs be the obstacle-free region, and Xgoal ⊂ X be the target

region. We assume that, for an initial position xplan
0 ∈ Xfree of the robot, a trajectory

planner gives us finite sequences of positions {xplan
j ∈ Xfree}j=0,1,...,N and control in-

puts {vplanj ∈ Rn}j=0,1,...,N−1 such that xplan
N ∈ Xgoal. Let T = (0 = t0 < t1 < . . . < tN = T )

be the partition of the time horizon [0, T ], with ∆tj = tj+1 − tj satisfying

vplanj ∆tj = xplan
j+1 − xplan

j , j = 0, 1, . . . , N − 1. (3.1)

The planned trajectory, xplan(t), t ∈ [0, T ] is generated by the linear interpolations

between xplan
j and xplan

j+1 , (j = 0, 1, . . . , N − 1).
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3.1.2 Robot Dynamics

Assume that a robot following the planned path generates a trajectory defined

by a random process xxxsys(t), t ∈ [0, T ] with associated probability space (Ω,F, P ).

We assume that the process xxxsys(t) satisfies the following controlled Itô process:

dxxxsys(t) = vvvsys(t)dt+R
1
2dwww(t), t ∈ [0, T ] (3.2)

with xxxsys(0) = xplan
0 . Here, vvvsys(t) is the velocity input command, www(t) is the n-

dimensional standard Brownian motion, and R is a given positive definite matrix

used to model the process noise intensity. We assume that the robot tracks the

planned trajectory in open-loop using a piecewise constant control input:

vvvsys(t) = vplanj ∀ t ∈ [tj, tj+1). (3.3)

The time discretization of (3.2) under T, based on the Euler-Maruyama method

Kloeden and Platen (1992) yields:

xxxsys(tj+1) = xxxsys(tj) + vvvsys(tj)∆tj + nnn(tj) (3.4)

where nnn(tj) ∼ N(0,∆tjR). Introducing xxxsys
j := xxxsys(tj), uuu

sys
j := vvvsys(tj)∆tj, nnnj :=

nnn(tj), and Σnnnj
:= ∆tjR, (3.4) can be rewritten as

xxxsys
j+1 = xxxsys

j + uuusys
j + nnnj, nnnj ∼ N(0,Σnnnj

), (3.5)

for j = 0, 1, . . . , N − 1. Further, using (3.3) and (3.1), uuusys
j can be rewritten as

uuusys
j = vplanj ∆tj = xplan

j+1 − xplan
j . (3.6)

Let

xxx(t) := xxxsys(t)− xplan(t), t ∈ [0, T ] (3.7)

be the deviation of the robot from the planned trajectory during trajectory tracking.

Defining xxxj := xxx(tj), from (3.5), (3.6) and (3.7), the dynamics of xxxj can be written as

xxxj+1 = xxxj + nnnj, nnnj ∼ N(0,Σnnnj
) (3.8)
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for j = 0, 1, . . . , N − 1 with xxx0 = 0. The state xxxj is distributed as xxxj ∼ N(0,Σxxxj
)

where Σxxxj
propagates according to Σxxxj+1

= Σxxxj
+ Σnnnj

, j = 0, 1, . . . , N − 1, with the

initial covariance Σxxx0 = 0.

3.1.3 Problem Statement

The continuous-time end-to-end risk R over the time horizon [0, T ] is formu-

lated as (1.3). Under T, we reformulate R as follows:

R =P

 N⋃
j=1

⋃
t∈Tj

xxxsys(t)∈ Xobs

 (3.9)

where Tj = [tj−1, tj], j = 1, 2, . . . , N . In the rest of the paper, we deal with formula-

tion (3.9) in order to derive upper bounds for R.

3.1.4 Properties of Brownian Motion

Definition 1 (Markov property). Let www(t), t ≥ 0 be an n-dimensional Brownian

motion started in z ∈ Rn. Let s ≥ 0, then the process w̃ww(t) := www(t+ s)−www(s), t ≥ 0

is again a Brownian motion started in the origin and it is independent of the process

www(t), 0 ≤ t ≤ s.

Theorem 1 (Reflection principle). If www(t), t ≥ 0 is a one-dimensional Brownian

motion started in the origin and d > 0 is a threshold value, then

P

(
sup
s∈[0,t]

www(s) ≥ d

)
= 2P (www(t) ≥ d) . (3.10)

Refer to Durrett (2019) and Mörters and Peres (2010) for the proof.

3.2 Continuous-Time Risk Analysis

In this Section, we first reformulate R in terms of one-dimensional Brownian

motions and then use the properties from Section 3.1.4 to compute bounds for R.
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For the analysis in Sections 3.2.1 to 3.2.3, we assume that Xobs is convex. In Section

3.2.4, we explain how the analysis can be generalized when Xobs is non-convex.

3.2.1 R in terms of One-Dimensional Brownian Motions

Let Sj be the path segment connecting xplan
j−1 and xplan

j or equivalently, xplan(tj−1)

and xplan(tj), j = 1, 2, . . . , N . Now, we conservatively approximate Xobs with a half

space, similar to Morgan et al. (2014), Zhu and Alonso-Mora (2019). Since Sj and

Xobs are convex, bounded and disjoint subsets of Rn, from the hyperplane separation

theorem, we can guarantee the existence of a hyperplane that strictly separates Sj

and Xobs. Let Hj : a
T
j x− bj = 0, aj ∈ Rn, bj ∈ R, ∥aj∥ = 1 be a hyperplane such that

Xobs ⊆ H+
j and Sj ⊂ H−

j where the half spaces H+
j and H−

j are defined as

H+
j := {x ∈ Rn : aTj x− bj ≥ 0}, H−

j := Rn\H+
j . (3.11)

Since H+
j is a conservative approximation of Xobs, we can upper bound R in (3.9) as

R ≤P

 N⋃
j=1

⋃
t∈Tj

xxxsys(t)∈ H+
j

 . (3.12)

To find a least conservative upper bound, each hyperplane Hj can be constructed

using the solution (y∗1, y
∗
2) to the following optimization problem:

min
y1,y2∈Rn

∥y1 − y2∥

s.t. y1 ∈ Xobs, y2 ∈ Sj.
(3.13)

The least conservative hyperplane Hj will be perpendicular to the line segment con-

necting y∗1 and y∗2, and passing through y∗1. If dj := ∥y∗1 − y∗2∥, then dj represents

the minimum distance of Sj from Xobs. Fig. 3.1 shows an example of an optimal

hyperplane Hj for a given Xobs and Sj.

Now, it can be shown that⋃
t∈Tj

xxxsys(t) ∈ H+
j

 ⊆

⋃
t∈Tj

aTj xxx(t) ≥ dj

 (3.14)
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Figure 3.1: The least conservative hyperplane Hj approximating Xobs (shown in a
red-faced circle) with a half space H+

j (shown in red hatching). dj is the minimum
distance of Sj from Xobs.

where xxx(t) is the deviation of the robot from the planned trajectory as defined in

(3.7). Proof of (3.14) is presented in Appendix A. Using (3.12) and (3.14), R can be

upper-bounded as

R ≤P

 N⋃
j=1

⋃
t∈Tj

aTj xxx(t) ≥ dj

 . (3.15)

For the proposed robot dynamics (Section 3.1.2), it is trivial to show that aTj xxx(t) is

a one-dimensional Brownian motion for t ∈ [0, T ] that starts in the origin. Let us

denote wwwj(t) := aTj xxx(t), j = 1, 2, . . . , N . Now, (3.15) can be written as

R ≤ P

(
N⋃
j=1

max
t∈Tj

wwwj(t) ≥ dj

)
. (3.16)

Defining Ej :=

(
max
t∈Tj

wwwj(t) ≥ dj

)
, (3.16) can be rewritten as

R ≤ P

(
N⋃
j=1

Ej

)
. (3.17)

Since {Ej}j=1,2,...,N are non-independent events, computing (3.17) exactly is a chal-

lenging task. In the following sections, we derive bounds for P

(
N⋃
j=1

Ej

)
.

33



3.2.2 First-Order Risk Bound

Define pj := P (Ej) = P

(
max

t∈[tj−1,tj ]
wwwj(t) ≥ dj

)
. Applying Boole’s inequality

(1.5), the probability in (3.17) can be decomposed as

R ≤ P

(
N⋃
j=1

Ej

)
≤

N∑
j=1

pj. (3.18)

This gives us a first-order risk bound for R. pj is the continuous-time risk associated

with the time segment Tj = [tj−1, tj]. Note that the bound in (3.18) possesses the

time-additive structure which is helpful to use this bound in the risk-aware motion

planning algorithms.

In order to take advantage of the reflection principle to compute pj, Ariu et

al. Ariu et al. (2017) proposes to compute an upper bound to pj as

pj ≤ P

(
max
t∈[0,tj ]

wwwj(t) ≥ dj

)
. (3.19)

Using the reflection principle (3.10), the right side of (3.19) can be evaluated as

P

(
max
t∈[0,tj ]

wwwj(t)≥dj

)
=2P (wwwj(tj)≥dj)=2P

(
aTj xxxj≥dj

)
. (3.20)

From (3.18), (3.19), and (3.20) we get

R ≤ 2
N∑
j=1

P
(
aTj xxxj ≥ dj

)
. (3.21)

The bound in (3.21) requires computing probabilities only at the discrete-time steps,

simplifying the estimation of the continuous-time risk. However, the over-approximation

in (3.19) introduces unnecessary conservatism that can be avoided using the Markov

property of Brownian motion. Next, we present a way by which pj can be computed

exactly without any over-approximation.

For notational convenience, let us denote the random variables wwwj(tj−1) and

wwwj(tj) by zzzsj and zzzej respectively:

zzzsj := wwwj(tj−1) = aTj xxxj−1, zzzej := wwwj(tj) = aTj xxxj (3.22)
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for j = 1, 2, . . . , N . If µξξξ(ξ) denotes the probability density function (p.d.f.) of any

random variable ξξξ, then

µzzzsj
(zsj ) = N(0, σ2

zzzsj
), σ2

zzzsj
= aTj Σxxxj−1

aj,

µzzzej
(zej ) = N(0, σ2

zzzej
), σ2

zzzej
= aTj Σxxxj

aj.
(3.23)

Let us define zzzj :=
[
zzzsj zzzej

]T ∈ R2. It is straightforward to show that the joint

distribution of zzzj is

µzzzj(zj) = N
(
0,Σzzzj

)
, Σzzzj =

[
σ2
zzzsj

σ2
zzzsj

σ2
zzzsj

σ2
zzzej

]
. (3.24)

Now, we compute pj using the following theorem:

Theorem 2. If µzzzsj
(zsj ) and µzzzj(zj) are the distributions of the normal random vari-

ables zzzsj and zzzj, represented as (3.23) and (3.24) respectively, then pj is given by:

pj=

∫ ∞

zsj=dj

µzzzsj
(zsj )dz

s
j+ 2

∫ dj

zsj=−∞

∫ ∞

zej=dj

µzzzj(zj)dz
e
jdz

s
j . (3.25)

Proof. Let us define:

p1j := P

(
max

t∈[tj−1,tj ]
wwwj(t) ≥ dj, wwwj(tj−1) ≥ dj

)
,

p2j := P

(
max

t∈[tj−1,tj ]
wwwj(t) ≥ dj, wwwj(tj−1) < dj

)
.

Using the law of total probability, we can write pj as

pj = p1j + p2j . (3.26)

Since (wwwj(tj−1) ≥ dj) ⊆
(

max
t∈[tj−1,tj ]

wwwj(t) ≥ dj

)
, p1j can be computed as

p1j = P (wwwj(tj−1) ≥ dj) =

∫ ∞

zsj=dj

µzzzsj
(zsj )dz

s
j . (3.27)

Now, we write p2j as

p2j =P

(
max

t∈[tj−1,tj ]
wwwj(t) ≥ dj, zzz

s
j < dj

)
=P

(
max

t∈[0,tj−tj−1]
wwwj(t+ tj−1) ≥ dj, zzz

s
j < dj

)
.
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From Markov property of Brownian motion (Definition 1),

w̃wwj(t) = wwwj(t+ tj−1)−wwwj(tj−1), t ∈ [0, (T − tj−1)] (3.28)

is a one-dimensional Brownian motion that starts in the origin. Rewriting p2j in terms

of w̃wwj(t), we get

p2j = P

(
max

t∈[0,tj−tj−1]
w̃wwj(t) ≥ dj − zzzsj , zzz

s
j < dj

)
=

∫ dj

−∞
P

(
max

t∈[0,tj−tj−1 ]̃
wwwj(t)≥dj − zsj

)
µzzzsj

(zsj )dz
s
j .

(3.29)

Since dj − zsj > 0, ∀ zsj ∈ (−∞, dj), we can apply the reflection principle (3.10) and

rewrite (3.29) as

p2j =

∫ dj

−∞
2P
(
w̃wwj(tj−tj−1) ≥ dj−zsj

)
µzzzsj

(zsj )dz
s
j . (3.30)

Let us denote the random variable w̃wwj(tj − tj−1) by yyyj. Using (3.28) and (3.22),

yyyj := w̃wwj(tj − tj−1) = wwwj(tj)−wwwj(tj−1) = zzzej − zzzsj ,

and the p.d.f. of yyyj is µyyyj(yj) = N(0, σ2
yyyj
) where σ2

yyyj
= σ2

zzzej
− σ2

zzzsj
. Now, (3.30) can be

rewritten as

p2j = 2

∫ dj

−∞

(∫ ∞

dj−zsj

µyyyj(yj) dyj

)
µzzzsj

(zsj )dz
s
j

=2

∫ dj

−∞

∫ ∞

dj−zsj

1

2πσzzzsjσyyyj
exp

−1

2

(
zsj
σzzzsj

)2
− 1

2

(
yj
σyyyj

)2dyjdzsj .
(3.31)

The outside integral in right side of (3.31) is w.r.t. zsj and the inside is one is w.r.t.

yj. Substituting yj with zej − zsj , (3.31) can be rewritten as

p2j =2

∫ dj

zsj=−∞

∫ ∞

zej=dj

1

2πσzzzsjσzzzej
√

1− ρ2
·

exp

− 1

2(1−ρ2)

(zsj
σzzzsj

)2
−

2ρ zsjz
e
j

σzzzsjσzzzej
+

(
zej
σzzzej

)2 dzej dz
s
j

(3.32)
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where ρ = σzzzsj/σzzzej . The expression inside the double integral of (3.32) is a bivariate

normal distribution of zzzj. Hence,

p2j = 2

∫ dj

zsj=−∞

∫ ∞

zej=dj

µzzzj(zj)dz
e
j dz

s
j . (3.33)

Combining (3.26), (3.27) and (3.33) we recover (3.25).

MATLAB’s mvncdf function can be utilized to compute the integrations (3.27)

and (3.33) numerically.

3.2.3 Second-Order Risk Bound

The proposed first-order risk bound (3.18) can be tightened using a variant

of Hunter’s inequality that additionally considers the joint probability of consecutive

events Prékopa (2003):

R ≤ P

(
N⋃
j=1

Ej

)
≤

N∑
j=1

pj −
N−1∑
j=1

pj, j+1

where pj, j+1 := P (Ej∩Ej+1) is the joint risk associated with the time segments Tj and

Tj+1. Computing pj, j+1 exactly is challenging. In this work, we propose to compute

a lower bound pLBj, j+1 of pj, j+1 using the following theorem:

Theorem 3. If tj−1 = t̂0j < t̂1j < . . . < t̂
rj
j = tj is a discretization of the time segment

Tj, and zzzij, Dj are defined as

zzzij := wwwj(t̂
i
j) = aTj xxx(t̂

i
j),

Dj :=
(
zzz0j < dj

)
∩
(
zzz1j < dj

)
∩ . . . ∩

(
zzz
rj
j < dj

)
,

then pj, j+1 is lower bounded by pLBj, j+1 given as

pLBj, j+1 = 1− P (Dj)− P (Dj+1) + P (Dj ∩Dj+1).
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Proof. Introduce Cj as

Cj =
(
wwwj(t̂

0
j) ≥ dj

)
∪
(
wwwj(t̂

1
j) ≥ dj

)
∪ . . . ∪

(
wwwj(t̂

rj
j ) ≥ dj

)
=
(
zzz0j ≥ dj

)
∪
(
zzz1j ≥ dj

)
∪ . . . ∪

(
zzz
rj
j ≥ dj

)
=Dc

j.

Now, since Cj ⊂ Ej

pj, j+1 ≥ P (Cj ∩ Cj+1)

= 1− P (Dj ∪Dj+1)

= 1− P (Dj)− P (Dj+1) + P (Dj ∩Dj+1)

= pLBj, j+1.

P (Dj) can be computed by finding the joint distribution of
[
zzz0j zzz1j . . . zzz

rj
j

]T
and P (Dj∩Dj+1) by finding the joint distribution of

[
zzz0j zzz1j . . . zzz

rj
j zzz0j+1 zzz1j+1 . . . zzz

rj+1

j+1

]T
.

The computations of P (Dj) and P (Dj ∩Dj+1) are summarized in Appendix B. Now,

we get our second-order risk bound as follows:

R ≤
N∑
j=1

pj −
N−1∑
j=1

pLBj, j+1. (3.34)

Similar to the first-order risk bound (3.18), this bound also possesses the time-additive

structure. Note that the higher sampling rates we choose to discretize the time

segments Tj (a set of higher rj’s), the tighter the bound in (3.34) becomes.

3.2.4 Risk Analysis when Xobs is Non-Convex

As mentioned earlier, the analysis in Sections 3.2.1 to 3.2.3 assumes that Xobs is

convex, which is sufficient to guarantee the existence of a set of separating hyperplanes

{Hj}j=1,2,...,N . When Xobs is non-convex, we partition it into M subregions Xobsm ,

m = 1, 2, . . . ,M such that Xobs =

(
M⋃

m=1

Xobsm

)
and a set of separating hyperplanes
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{Hj}j=1,2,...,N exists for each Xobsm . We then bound R as

R ≤
M∑

m=1

Rm, Rm = P

 ⋃
t∈[0,T ]

xxxsys(t) ∈ Xobsm

 .

The first and second-order upper bounds for Rm can be computed using the analysis

in Sections 3.2.1 to 3.2.3. In order to obtain tight upper-bounds for R, the partitioning

of Xobs can be optimized which is left for the future work.

3.3 Simulation Results

In this Section, we demonstrate the validity and performance of our continuous-

time risk bounds via a ground robot navigation simulation. The configuration space

is X = [0, 1] × [0, 1]. We assume that the robot dynamics are governed by the Itô

process (3.2), with R = 10−3 × I (I is a 2× 2 identity matrix), and it is commanded

to travel at a unit velocity i.e., ∥vvvsys(t)∥ = 1, t ∈ [0, T ]. As explained in Section 3.1,

we discretize the dynamics (3.2) under the time partition T. Due to the unit velocity

assumption, ∆tj = ∥xplan
j+1 − xplan

j ∥. Hence, our discrete-time robot dynamics are

xxxsys
j+1=xxxsys

j + uuusys
j + nnnj, nnnj∼N(0, ∥xplan

j+1 − xplan
j ∥R), (3.35)

where uuusys
j is defined as per (3.6). The model (3.35) is natural for ground robots

whose location uncertainty grows linearly with the distance traveled.

First, we plan trajectories using RRT* with the instantaneous safety criterion

Pedram et al. (2021) (i.e., at every time step, the confidence ellipse with a fixed safety

level is collision-free). For a given configuration space, four planned trajectories with

95%, 75%, 50%, and 25% instantaneous safety levels are shown in Fig. 3.2. In each

case, the confidence ellipses grow in size with the distance since the robot tracks these

trajectories in open-loop. Fig. 3.3 plots the continuous and discrete-time risk bounds

for these plans having different instantaneous safety (risk) levels. For validation, we

compute failure probabilities using 105 Monte Carlo simulations at a high rate of time
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Figure 3.2: Trajectories planned with the instantaneous safety criterion Pedram et al.
(2021) are shown in black. The black dots on the trajectories represent the planned
positions {xplan

j }j=1,2,...,N . The red dot represents the initial position xplan
0 of the robot.

The red-faced polygons represent Xobs and the green faced rectangle represents Xgoal.
The trajectories are shown with (a) 95%, (b) 75%, (c) 50% and (d) 25% confidence
ellipses. The ellipses at the time steps {tj}j=1,2,...,N are shown in black and the ellipses
at the intermediate time steps are shown in blue.
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Figure 3.3: End-to-end probabilities of failure computed for the trajectories with
different instantaneous risk levels. The solid red and blue graphs represent the first-
order and second-order continuous-time risk bounds (Bc) respectively. The dotted
graphs are discrete-time risk bounds (Bd) computed using (1.6) at different rates
of time discretization (rd). The Monte Carlo estimates of the same trajectories are
shown in black.

discretization (rd = 100) and assume them as the ground truths (shown in black).

The dotted graphs are the discrete-time risk bounds (Bd) computed using (1.6) at

different rates of time discretization (rd). As is evident from the graph, the discrete-

time risk bounds at a lower rate of time discretization underestimate the Monte

Carlo estimates, and as the time-discretization rate increases, they become overly

conservative. On the other hand, our continuous-time risk bounds (Bc) (shown with

solid red and blue graphs) are tighter, and at the same time ensure conservatism.

Next, we demonstrate a larger statistical evaluation over 100 trajectories planned

using RRT* in randomly-generated environments (random initial, goal and obstacle

positions). These trajectories are generated with 5% instantaneous safety criterion

Pedram et al. (2021). The average risk estimate of 105 Monte Carlo simulations (run

at a high rate of time discretization rd = 100) is 0.27. The statistics of the discrete-

time and continuous-time risk estimates are shown in Table 3.1. The discrete-time
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risk estimates are computed using (1.6) at increasing rates of time discretization (rd).

The continuous-time risk estimates are computed using the method proposed by Ariu

et al. Ariu et al. (2017) and our approach. The Bias and RMSE columns lists re-

spectively the mean (signed) difference and the root mean squared difference between

the corresponding estimate and the Monte Carlo estimate. The % Conservative

column reports the percentage of cases where the corresponding estimate was greater

than (or within 0.1% of) the Monte Carlo estimate and theAvg. Time lists the aver-

age computation times for our MATLAB implementations. From the data presented,

Table 3.1: Comparison of different risk estimates over 100 trajectories. Computation
is performed in MATLAB on a consumer laptop.

Risk Estimates Avg. Time Bias RMSE %Conservative

Monte Carlo 101.50 s 0 0 -
Discrete-time

rd : 5 0.14 s -0.14 0.18 28%
rd : 10 0.26 s -0.002 0.16 59%
rd : 20 0.52 s 0.31 0.57 82%
rd : 55 1.53 s 1.50 2.33 100%
rd : 100 2.87 s 2.98 4.53 100%

Continuous-time
Ariu et al. Ariu et al. (2017) 1.39 s 0.97 1.33 100%

Our 1st order 1.47 s 0.66 0.90 100%
Our 2nd order 2.23 s 0.28 0.36 100%

following conclusions can be drawn: First, our risk bounds require significantly less

computation time than the Monte Carlo method. Second, unlike the discrete-time

risk bounds at the lower sampling rates, our bounds remain conservative (i.e., safe)

in all the trials. Lastly, our bounds produce tighter estimates than the discrete-time

risk bounds at the higher sampling rates and the continuous-time risk bound of Ariu

et al. (2017).
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3.4 Conclusion

In this paper, we conducted an analysis to estimate the continuous-time col-

lision probability of motion plans for autonomous agents with linear controlled Itô

dynamics. We derived two upper bound for the continuous-time risk using the prop-

erties of Brownian motion (Markov property and reflection principle), and probability

inequalities (Boole and Hunter’s inequality). Our method boils down to computing

probabilities at the discrete-time steps, simplifying the analysis, yet providing risk

guarantees in continuous-time. We show that our bounds outperform the discrete-

time risk bound (1.6) and are cheaper in computation than the näıve Monte Carlo

sampling method.

Our analysis motivates a number of future investigations. This paper assumes

that the robot follows a linear controlled Itô process. Future work will focus on

risk analysis for systems with generalized stochastic dynamics. Another direction we

would like to explore is risk analysis by fusing sampling-based methods and methods

from continuous stochastic processes as suggested in Frey et al. (2020). This hybrid

approach may provide the best of both worlds: high accuracy as well as computational

simplicity and compatibility with continuous optimization.
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Appendix

Proof of (3.14)

⋃
t∈Tj

xxxsys(t) ∈ H+
j

 =

⋃
t∈Tj

aTj xxx
sys(t) ≥ bj

 =

⋃
t∈Tj

aTj xxx(t) ≥ bj − aTj x
plan(t)

 .

(D.1)

Two equalities of (D.1) follow from (3.11) and (3.7) respectively. Now, recall that dj

is the minimum distance of Sj from Xobs i.e., dj = bj − aTj y
∗
2, where y∗2 is the solution

to the optimization problem (3.13). Noting that bj − aTj x
plan(t) ≥ dj, ∀ t ∈ Tj, from

(D.1), ⋃
t∈Tj

xxxsys(t) ∈ H+
j

 ⊆

⋃
t∈Tj

aTj xxx(t) ≥ dj

 .

Computation of P (Dj) and P (Dj ∩Dj+1)

Let us define: ∆t̂ij := t̂i+1
j − t̂ij, and x̂xxi

j := xxx(t̂ij). From (3.8), we can write

x̂xxi+1
j = x̂xxi

j + n̂nni
j, n̂nni

j ∼ N(0,Σn̂nni
j
) (D.2)

where x̂xx0
j = xxxj−1, Σn̂nni

j
:= ∆t̂ijR, for i = 0, 1, . . . , rj − 1, and j = 1, 2, . . . , N . Multiply-

ing both sides of (D.2) by aTj we get

aTj x̂xx
i+1
j = zzzi+1

j = aTj x̂xx
i
j + aTj n̂nn

i
j, n̂nni

j ∼ N(0,Σn̂nni
j
).

Stacking all zzzij for i = 0, 1, . . . , rj, we can write the dynamics for the entire time

segment Tj as

zzzsegj = Mjx̂xx
0
j +Kjn̂nn

seg
j , n̂nnseg

j ∼ N(0,Σn̂nnseg
j
) (D.3)
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where zzzsegj :=
[
zzz0j zzz1j . . . zzz

rj
j

]T
, Mj = aTj · 1,

n̂nnseg
j =

[
n̂nn0
j n̂nn1

j . . . n̂nn
rj−1
j

]T
, Σn̂nnseg

j
= diag

0≤i≤rj−1
Σn̂nni

j
,

Kj =


0 0 . . . 0
aTj 0 . . . 0
aTj aTj . . . 0
...

...
. . .

...
aTj aTj . . . aTj



Computation of P (Dj):

In order to compute P (Dj), we need to find the distribution of zzzsegj . Since

x̂xx0
j = xxxj−1, it is distributed as x̂xx0

j ∼ N(0,Σxxxj−1
). Hence, from (D.3), the p.d.f. of zzzsegj

can be written as µzzzsegj
(zsegj ) = N(0,Σzzzsegj

) where Σzzzsegj
= MjΣxxxj−1

MT
j +KjΣn̂nnseg

j
KT

j .

Now, P (Dj) can be computed as

P (Dj) =

∫
Cj

µzzzsegj
(zsegj ) dzsegj (D.4)

where Cj is a hypercube of dimension rj +1, having its sides along each direction run

from −∞ to dj.

Computation of P (Dj ∩Dj+1):

Let us define zzzsegj, j+1 :=
[
zzzsegj zzzsegj+1

]T
. In order to compute P (Dj ∩Dj+1), we

need to find the distribution of zzzsegj, j+1. First, let us write x̂xx
0
j+1 in terms of x̂xx0

j .

x̂xx0
j+1 = x̂xx0

j +Gjn̂nn
seg
j (D.5)

where Gj =
[
I I . . . I

]
n×nrj

, j = 1, 2, . . . , N−1, and I is an n×n identity matrix.

We know that

zzzsegj+1 = Mj+1x̂xx
0
j+1 +Kj+1n̂nn

seg
j+1. (D.6)

Substituting x̂xx0
j+1 from (D.5) in (D.6), we get

zzzsegj+1 = Mj+1x̂xx
0
j +Mj+1Gjn̂nn

seg
j +Kj+1n̂nn

seg
j+1. (D.7)
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Let Hj, j+1 := cov(zzzsegj , zzzsegj+1). Using (D.3) and (D.7), we can show that

Hj, j+1 = MjΣxxxj−1
MT

j+1 +KjΣn̂nnseg
j
GT

j M
T
j+1. (D.8)

For computing (D.8) we use the fact that

cov(x̂xx0
j , n̂nn

seg
j ) = cov(x̂xx0

j , n̂nn
seg
j+1) = cov(n̂nnseg

j , n̂nnseg
j+1) = 0

Now, the p.d.f. of zzzsegj, j+1 can be written as µzzzsegj, j+1

(
zsegj, j+1

)
= N(0,Σzzzsegj, j+1

) where

Σzzzsegj, j+1
=

[
Σzzzsegj

Hj, j+1

HT
j, j+1 Σzzzsegj+1

]

and P (Dj ∩Dj+1) can be computed as

P (Dj ∩Dj+1) =

∫
Cj

∫
Cj+1

µzzzsegj, j+1

(
zsegj, j+1

)
dzsegj+1dz

seg
j . (D.9)

MATLAB’s mvncdf function can be utilized for computing (D.4) and (D.9) numeri-

cally.
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András Prékopa. Probabilistic programming. Handbooks in operations research

and management science, 10:267–351, 2003.

Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. A barrier function ap-

proach to finite-time stochastic system verification and control. Automatica,

125:109439, 2021.

Steven J Schwager. Bonferroni sometimes loses. The American Statistician, 38

(3):192–197, 1984.

50



Shridhar K Shah, Chetan D Pahlajani, and Herbert G Tanner. Probability

of success in stochastic robot navigation with state feedback. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3911–3916,

2011.

Robert F Stengel. Optimal control and estimation. Courier Corporation, 1994.

Daniel Strawser and Brian Williams. Approximate branch and bound for fast,

risk-bound stochastic path planning. In ICRA, pages 7047–7054, 2018.

Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under

uncertainty using iterative local optimization in belief space. The International

Journal of Robotics Research, 31(11):1263–1278, 2012.

Shakiba Yaghoubi, Keyvan Majd, Georgios Fainekos, Tomoya Yamaguchi, Danil

Prokhorov, and Bardh Hoxha. Risk-bounded control using stochastic barrier

functions. IEEE Control Systems Letters, 5(5):1831–1836, 2020.

Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for

MAVs in dynamic environments. IEEE Robotics and Automation Letters, 4(2):

776–783, 2019.

51


	Chapter 1: Introduction
	Discrete-Time Dynamics Systems
	Contributions

	Continuous-Time Dynamics System
	Contributions


	Chapter 2: Discrete-Time Risk Analysis
	Preliminaries
	Problem Formulation
	Probability Bounds

	End-to-End Risk Analysis
	Distribution of the Closed-Loop Trajectory
	Computation of the Bounds

	Simulation Results
	Discussion
	Risk Bounds for Continuous-Time Systems
	Higher-Order Probability Bounds

	Conclusion

	Chapter 3: Continuous-Time Risk Analysis
	Preliminaries and Problem Statement
	Planned Trajectory
	Robot Dynamics
	Problem Statement
	Properties of Brownian Motion

	Continuous-Time Risk Analysis
	R in terms of One-Dimensional Brownian Motions
	First-Order Risk Bound
	Second-Order Risk Bound
	Risk Analysis when Xobs is Non-Convex

	Simulation Results
	Conclusion

	Chapter 4: Publications
	Appendix
	Proof of (3.14)
	Computation of P(Dj) and P(DjDj+1)

	Works Cited

