
Path Planning Using Formal Methods

Apurva Patil

1 Introduction

Motion planning is a fundamental problem that has received a lot of attention
from robotics community. The classical goal of motion planning is to generate
a feasible path for a robot to move from an initial configuration to a target
configuration while avoiding obstacles on the way. Various methods such as
potential fields, navigation functions, cell decomposition, and sampling based
have been employed in the literature. Formal synthesis is another approach
used for this purpose. The attractive point of formal method is its ability to
express complex specifications using Boolean, temporal operators and atomic
propositions. For example, specifications like “Visit A, B, C infinitely often and
always avoid D” can be easily expressed in formal methods.

In this report, we solve the motion planning problem for continuous space
using formal methods. We consider two types of settings: one in which there
are no uncertainties in the system model and the environment, and other in
which uncertainties are taken into account. There are model checking algorithms
available in the literature that can be used to generate motion plans and control
policies for a finite model of robot motion. Various abstraction techniques are
proposed in the past to obtain a finite state model from the continuous space
and/or time model. In this report, we consider two different types of abstraction
techniques, one is applied in the setting when there are no uncertainties, which
results into a finite transition system, and the other one is used for the setting
with uncertainties, which results into a Markov Decision Process (MDP). The
algorithm for the no uncertainties case is based on a sampling based path-
planning algorithm. In this algorithm, as the number of samples increases, the
probability that a satisfying path is found approaches 1, i.e. our algorithm is
probabilistically complete.

Throughout this report, we have used LTL formulae for expressing the spec-
ifications formally. LTL has very friendly syntax and semantics, which can be
easily translated into natural language and can be used by untrained human
operators. Also, we make an assumption that during the motion of the robot
in the environment, the robot can determine its position precisely.

2 Preliminaries

Given a set Z, let 2Z denote its power set and let |Z| denote its cardinality. We
give the following formal definitions.

1

Definition 2.1 (Finite Transition System): A finite transition system is a
tuple T = (X,x0,∆, AP, J), where:

• X is a finite set of states;

• x0 ∈ X is the initial state;

• ∆ ⊆ X ×X is a set of transitions;

• AP is a set of atomic propositions (properties of interest);

• J : X → 2AP is a labeling function.

Definition 2.2 (Markov Decision Process): An MDP is a tupleM = (Q, q0,A,P, AP,K)
where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• A is a set of available actions, withA(q) defining the set of actions available
at the state q;

• P : Q × A × Q → [0, 1] is a transition probability function such that ∀
q ∈ Q and ∀ α ∈ A(q),

∑
q′∈Q

P(q, α, q′) = 1;

• AP is a set of atomic propositions;

• K : Q→ 2AP is a labeling function.

3 Problem Formulation

Let D ⊆ Rn be the configuration space of a robot, where n ∈ N, n ≥ 2. Let R
be a set of disjoint regions in D. Let AP be a set of atomic propositions, i.e.
the properties of interest corresponding to the regions in R. Throughout this
report, we consider AP = {obstacle, goali, free}, where i = {1, 2, . . . , s} and s
is the total number of goal regions in D. A map L: R → 2AP specifies how
properties are associated to the region in R.
Problem 3.1: Given an environment, E = (D, x0,R, AP, L), the initial config-
uration of the robot x0 ∈ D and an LTL formula φ over the set of properties
AP , find a control policy that generates a satisfying trajectory (in the absence of
uncertainties) or that maximizes the probability of satisfying φ (in the presence
of uncertainties).

In the Section 4, we solve Problem 3.1 assuming there are no uncertainties
in the environment and the model. To solve the problem in this setting we use a
sampling based algorithm Probabilistic RoadMap (PRM). A transition system
T is constructed using a PRM-based algorithm and then formal synthesis is used
to generate a trajectory of T that satisfies φ. As PRM possesses the theoretical
guarantee of probabilistic completeness, the proposed mechanism should find

2

a satisfying trajectory with probability 1 if such a trajectory exists and the
number of samples approaches infinity.

In the Section 5, we solve Problem 3.1 in the presence of uncertainties. We
abstract the environment E = (D, x0,R, AP, L) into an MDP and use proba-
bilistic synthesis techniques to generate a policy that maximizes the probability
of satisfying φ.

4 Planning in the Absence of Uncertainties

The mechanism implemented in this setting consists of three stages. First, in
Section 4.1, we construct a graph G = (V,E) using a PRM-based algorithm,
where V ⊂ D is a set of vertices and E ⊆ V ×V is a set of edges in the graph G.
Next, in Section 4.2, we construct a finite transition system T using the graph
G. This way we abstract the continuous environment E into a finite transition
system T . Lastly, in Section 4.3, we synthesize a trajectory of T that satisfies
the LTL formula φ.

4.1 Construction of a Graph G

The basic idea of PRM is the construction of a graph, G by attempting connec-
tions among m random samples in D. We modify the algorithm of PRM so that
it can be used to construct a finite transition system T for the formal synthesis
purpose. We first briefly introduce the functions used by our modified-PRM
algorithm.

4.1.1 Sample

Let Sample: ω → {Samplei(ω)}i∈N ⊂ D be a map from a sample space Ω
to a sequence of independent and identically distributed (i.i.d.) samples in D,
from a given distribution P . We assume that the support of P is the entire
configuration space D.

4.1.2 Near

Given a graph G, a configuration d ∈ D, and a positive real number r ∈ R>0, the
function Near : (G, d, r)→ V ′ ⊆ V returns the vertices in V that are contained
in a ball of radius r centered at d, i.e.

Near(G = (V,E), d, r) := {v ∈ V : v ∈ Bd,r}

4.1.3 isSimpleEdge

isSimpleEdge: D×D → {0, 1} is a function that takes two configurations d1, d2
in D and returns 1 if the edge (d1, d2) ({d ∈ Rn : d = λd1+(1−λ)d2, λ ∈ [0, 1]})
is simple, otherwise it returns 0. An edge (d1, d2) is simple if (d1, d2) ⊂ D and
the number of times (d1, d2) crosses the boundary of any region R ∈ R is at

3

most one. Therefore, isSimpleEdge returns 1 if either:
(1) d1 and d2 belong to the same region R and (d1, d2) does not cross the bound-
ary of R or
(2) d1 and d2 belong to two regions R1 and R2, respectively, and (d1, d2) crosses
the common boundary of R1 and R2 once. In Algorithm 1, an edge is con-
structed between d1 and d2 if it is a simple edge (i.e isSimpleEdge returns 0).

Our algorithm of constructing G using modified-PRM is outlined in Algo-
rithm 1. The algorithm begins with initializing the vertex set V with the initial
configuration of the robot x0, and m randomly selected i.i.d. configurations
from D. The edge set E is initialized with an empty set. Then the algorithm
attempts to connect vertices within a distance of r. Successful connections (that
correspond to simple edges) result in the addition of new edges to the edge set
E. Note that if the connection between vertices v and u is successful then two
edges (v, u) and (u, v) are added to the set E. The construction of G is explained
in Fig. 1.

Algorithm 1: Modified-PRM

1: V ← {x0} ∪ {Samplei}i=1,...,m; E ← ∅
2: foreach v ∈ V do
U ← Near(G = (V,E), v, r)\{v};
foreach u ∈ U do

if isSimpleEdge(v, u) then
E ← E ∪ {(v, u), (u, v)}

3: return G = (V,E)

4.2 Construction of a Transition System T
Once the the graph G = (V,E) is constructed the transition system T =
(X,x0,∆, AP, h) is constructed as follows:

• X = V ;

• ∆ = E;

• ∀ x ∈ X, J(x) = L(Rk), where Rk ∈ R is a region in D such that x ∈ Rk.

Due to the function isSimpleEdge used in the construction of G, the satisfaction
of the LTL formula φ can be checked by only looking at the properties corre-
sponding to the states of the transition system. Note that, all the edges in the
set E are bidirectional; hence if there is a transition from state xi to xj then
there is also a transition from state xj to xi. Also note that the vertex set V of
the graph G includes the initial configuration of the robot x0.

4

Figure 1: The configuration space is D ⊆ R2. The initial configuration x0 =
(0, 0). A set of disjoint regions R = {Ri}i=1,...,9. L(Rk) = {obstacle} for
k = 1, 3, 4, 5, 7, L(R2) = {goal1}, L(R6) = {goal2}, L(R8) = {goal3} and
L(R9) = {free}. The black dots represents random i.i.d. samples in D. A ball
Bd,r of radius r = 0.2 centered at v ∈ R9 is shown in blue. The connections of v
with the configurations inside the ball Bd,r are attempted. Only the connections
which correspond to the simple edges are included in the edge set E. The edges
are shown by black lines. The configuration u is inside the ball Bd,r but the
edge (v, u) crosses the boundary of R5 twice; hence (v, u) is not included in the
edge set E.

5

4.3 Synthesis of a Satisfying Trajectory

At this stage, we can use the model checking tools to find a trajectory π such
that π |= φ, using closed system synthesis. The transition system T and the
negation of the LTL formula ¬φ are fed to the model checking tool. If there
exists a trajectory π |= φ the model checker spits a counterexample, which is a
satisfying trajectory.

Note that the transition system T is an under-approximation of the envi-
ronment E = (D, x0,R, AP, L). Hence, the trajectory synthesized in T can
be implemented in E . Also note that the modified-PRM algorithm retains the
probabilistic completeness of PRM (for the proof of probabilistic completeness
of PRM please refer to (1)). Hence, as the number of samples in the construction
of the graph G approaches infinity, the proposed mechanism finds a trajectory
that satisfies the LTL formula φ with probability 1 if such a trajectory exists.

4.4 Example

Consider the environment E shown in Fig. 1. D = (0, 1)2. The LTL formula
φ = �((¬obstacle) ∧ (♦goal1) ∧ (♦goal2) ∧ (♦goal3)), i.e. we want to find a
trajectory that starts from x0 and visits R2, R6 and R8 infinitely often while
avoiding obstacles on the way. The first two stages of the presented mechanism
(Sections 4.1 and 4.2) are implemented in MATLAB. The construction of a
graph using the modified-PRM algorithm is shown in Fig. 2 (a)-(e). The number
of vertices in the graph are 100. Hence, |X| = 100. The final stage of the
mechanism (Section 4.3) is implemented in NuSMV. The solution is shown in
Fig. 2 (f)

5 Planning in the Presence of Uncertainties

The mechanism implemented in this setting consists of two stages. First, we
abstract the continuous environment E into an MDPM (Section 5.1). Then, we
synthesize a control policy C∗ forM that maximizes the probability of satisfying
φ using probabilistic synthesis tools, thereby solving Problem 3.1 (Section 5.2).

5.1 Construction of an MDP M
We discretize D into a grid as shown in Fig. 3. Each cell of the grid represents
a state q ∈ Q of M. The initial state of M, q0 is such that the initial position
of the robot x0 ∈ q0. The sets of available actions at each state q ∈ Q, and
the transition probability function P will be designed according to the robot’s
model and the discretization of D. The labeling function K is as follows:

• ∀ q ∈ Q, if q ∩Rk 6= ∅ and L(Rk) = {obstacle} then K(q) = L(Rk);

• ∀ q ∈ Q, if q ⊆ Rk and L(Rk) = {free} or {goali} then K(q) = L(Rk).

6

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a)-(e) Construction of a graph G using modified-PRM algorithm. (f)
The specification is to visit all the green regions infinitely often while avoiding
red regions. A satisfying trajectory obtained using formal synthesis is shown in
blue. 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

Figure 3: The configuration space is D ⊆ R2. The initial state q0 is shown
in yellow. A set of disjoint regions R = {Ri}i=1,...,8. L(Rk) = {obstacle} for
k = 1, . . . , 6, L(R7) = {goal1}, and L(R8) = {free}.

5.2 Synthesis of the Optimal Control Policy C∗

Now, we want to generate an MDP control policy C∗ that maximizes the proba-
bility of satisfying φ, i.e. Pmax[φ]. The probabilistic model checking algorithms
take φ and the MDPM, and return the maximum probability over all possible
policies that φ is satisfied and a control policy C∗ that produces this probability.
The method is as follows. The state space Q is partitioned into three subsets.
The first, Qyes, contains all those states that satisfy φ with probability 1 for
some control policy. The second, Qno contains those states for which the proba-
bility of satisfying φ is 0 for all control policies, while Q? contains the remaining
states.

Let yq denote the probability of satisfying φ from state q ∈ Q. Then yq’s
are determined by the following linear optimization problem:

min
yq

∑
q∈Q

yq subject to:

yq = 1 ∀q ∈ Qyes

yq = 0 ∀q ∈ Qno

yq ≥
∑
q′∈Q

P(q, α, q′) · yq′ ∀α ∈ A(q)

∀q ∈ Q\(Qyes ∪Qno)

(1)

Finding the unique solution to this problem yields the optimal probabilities y∗q .
The desired control policy C∗ is thus the function mapping each state q ∈ Q\Qno

to the optimal action α∗q ∈ A(q) identified by the solution to eq. (1).

8

5.3 Example

Consider the environment E shown in Fig. 3. D = (0, 1)2. The LTL formula is
φ = ¬obstacle U goal1, i.e. we want to synthesize a control policy C∗ starting
from q0 that maximizes the probability of reaching R7 while avoiding obstacles
on the way. We discretize D into a grid in which the size of each cell is 0.1×0.1.
Hence, |Q| = 100. The initial state q0 is shown in yellow. Assume that the set
of available actions for all states q ∈ Q is A(q) = {right, up, left, down} with
the uncertainty of 0.8 of successful transition and 0.1 of moving ±45 deg to the
intended direction. The robot bounces back to its original state when it hits the
boundary of D. The transition probabilities can be computed given the sensor,
plant, and environment noise model or through experimental trials. The first
stage (Section 5.1) of the presented mechanism is implemented in MATLAB.
The second stage (Section 5.2) is implemented in the probabilistic verification
and synthesis tool PRISM. The maximum probability of satisfying φ starting
from q0 is 0.79. The optimal policy C∗ is shown in Fig. 4. One of the trajectories
generated using C∗ that satisfies φ and another one that doesn’t satisfy φ are
shown in Fig. 5.

Figure 4: The optimal control policy C∗

6 Conclusion

In this report, we analyzed the motion planning problem for continuous space
using formal methods. We considered two different types of abstraction tech-
niques, one is applied in the setting when there are no uncertainties in the
system model and the environment, and the other one is used for the setting
with uncertainties. The algorithm for the no uncertainties case is based on a
sampling based path-planning algorithm PRM. In this algorithm, as the number

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 5: (a) A trajectory (shown in blue) obtained by C∗ that satisfies φ. (b)
A trajectory obtained by C∗ that doesn’t satisfy φ.

of samples increases, the probability that a satisfying path is found approaches
1, i.e. our algorithm is probabilistically complete. For the case with uncer-
tainties, we abstract the continuous space into a grid and design an MDP. The
probabilistic synthesis tool is used to generate an optimal policy in this MDP.

References

[1] S. Karaman, and E. Frazzoli, “Sampling-based algorithms for optimal mo-
tion planning,” International Journal of Robotics Research, vol. 30, pp.
846-894, 2011.

[2] C. Vasile and C. Belta, “Sampling-based temporal logic path planning,”
in Int. Conf. on Intelligent Robots and Systems. IEEE, Nov 2013, pp.
4817–4822.

[3] Yoo C, Fitch R and Sukkarieh S (2013) Provably-correct stochastic mo-
tion planning with safety constraints. In: Proceedings of IEEE ICRA, pp.
981–986.

[4] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with probabilistic
satisfaction guarantees,” in Proc. ICRA, 2010, pp. 3227–3232.

10

