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Proposal Talk: Recap
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Today’s Talk: Overview
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What is Path Integral Control?
▶ Path integral control solves stochastic optimal control problems. It

computes optimal control input online (in real-time) via Monte-Carlo
simulations.

▶ The optimal control input is computed via the empirical mean of the
path cost ("path integral") of simulated sample paths.
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What is Path Integral Control? (Solution via HJB PDE)

Derivation by [Kappen 2005]
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What is Path Integral Control? (Solution via KL Control)

Derivation by [Theodorou and Todorov 2012]
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Solution of KL Control using Path Integral Method
▶ P , Q: Probability distributions
▶ C : X → R: cost function
▶ For λ > 0, the KL control problem:

min
P

EP [C(x)] + λD(P∥Q)︸ ︷︷ ︸
KL Divergence

KL Divergence: D(P∥Q) :=

∫
X
log

dP

dQ
(x)P(dx).

Then according to the Legendre’s duality,

min
P

EP [C(x)] + λD(P∥Q) =−λ log EQ

[
exp

{
− 1
λ
C(x)

}]
︸ ︷︷ ︸

Free energy

≈−λ log
1
N

N∑
i=1

[
exp

{
− 1
λ
C (i)(x)

}]
︸ ︷︷ ︸

Monte Carlo
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Why Path Integral Control?
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Why Path Integral Control?
Neural PDE solvers can solve high-dimensional HJB PDEs using deep neural
networks (DNN).

▶ Extensive training required
▶ Careful DNN construction and hyperparameter tuning required
▶ Difficult to provide optimality guarantees

1
1 Han et al., “Solving high-dimensional partial differential equations using deep learning", Proceedings of the National

Academy of Sciences 115.34, 2018.
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Stealthy Vehicle Misguidance and Its Mitigation
J. Bhatti and T. E. Humphreys, "Hostile control of ships via false GPS signals:
Demonstration and detection," NAVIGATION: Journal of the Institute of Navigation, 2017.
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Stealthy Vehicle Misguidance and Its Mitigation

Inspired by the GPS spoofing demonstration, we formulate a stochastic
zero-sum game to analyze the competition between
▶ Attacker, who tries to misguide the vehicle to an unsafe region covertly,

and
▶ Controller, who tries to mitigate the impact of attack signals



15/48

Stealthy Attack on Cruise Control

No attack Under attack

▶ The attacker injects a
disturbance signal to
degrade the control
performance stealthily

▶ The legitimate controller
tries to bring the vehicle
state to a nominal level

▶ Q: How to synthesize the worst-case attack for nonlinear systems while
remaining stealthy? (Attacker’s problem)

▶ Q: How to mitigate the impact of stealthy attacks? (Controller’s problem)
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Problem Setup

Adversary

Controlled system

= ( + ) +

Detector

Controller

+

▶ Attack model:

dvt = dwt (No attack)
dvt = θtdt + dwt (Under attack)

θt is a feedback policy.

▶ Controller can apply a legitimate control
input ut to combat with the noise wt and
the potential attack input θt

min
u

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
︸ ︷︷ ︸
e.g., penalty for going off-road

−λ× (Attack Detectability)

λ > 0 captures the trade-off between an attacker’s desire to remain stealthy
and its goal of degrading system performance.

Q: How to quantify the "attack detectability"?
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KL Divergence: A Detectability Measure?
▶ Let P be the measure when the system is under attack, and Q be the measure

when the system is under no attack

▶ Type I error (false alarm): Q(A)

▶ Type II error (failure of detection): P(Ac )

▶ KL divergence provides lower bounds to the total probability of errors
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KL Divergence [nats]

Pinsker

B-H

Q(A) + P(Ac ) ≥ 1 −
√

1
2
D(P∥Q) Pinsker’s inequality

Q(A) + P(Ac ) ≥
1
2
exp(−D(P∥Q)) Bretagnolle-Huber

inequality

Mini-max KL Control Problem: min
u

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

s.t. dxt = (ft + gtut) dt + ht (θtdt + dwt)

The KL divergence captures the distance between the probability measures defined by
the dynamics with and without attack signals
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Minimax KL Control, Risk-Sensitive Control and
Two-Player Zero-Sum Stochastic Differential Game
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Minimax KL Control, Risk-Sensitive Control and
Two-Player Zero-Sum Stochastic Differential Game

We will take the variational approach to solve these problems numerically!
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Attacker’s Problem
Suppose controller’s policy ut is fixed. Let’s focus on the inner maximization problem

min
u

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

Theorem (Legendre Duality)
The value function of the above problem
Vt(xt) := maxθ EP

[∫ T
t cs(xs , us)ds

]
− λD(P||Q) exists, is unique and is given by

Vt(xt) = λ logEQ

[
exp

{
1
λ

∫ T

t
cs(xs , us)ds

}]
︸ ︷︷ ︸

free energy

Furthermore, the optimal attack signal θ∗t is given by

θ∗t dt=h⊤t (xt)
(
ht(xt)ht(xt)

⊤
)−1 EQ

[
exp

{
1
λ

∫ T
t cs(xs , us)ds

}
ht(xt)dwt

]
EQ

[
exp

{
1
λ

∫ T
t cs(xs , us)ds

}]
▶ Recall Q is the probability measure in which dvt = θtdt + dwt is a standard

Browninan motion (i.e. θt = 0)
▶ EQ [·] can be estimated from simulated trajectories of dxt = ftdt + gtutdt + htdwt
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Attack Synthesis by Monte Carlo: Path Integral Control

▶ Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

λ log

 1
N

N∑
i=1

exp

{
1
λ

∫ T

t

cs(x
i
s , u

i
s)ds

} a.s.→ Vt(xt)

Here, {x i
s , u

i
s , t ≤ s ≤ T}Ni=1 are randomly drawn sample paths by

running dxt = ft(xt)dt + gt(xt)utdt + ht(xt)dwt

▶ Direct computation of the optimal control (worst and stealthiest attack)

h⊤
t (xt)

(
ht(xt)ht(xt)

⊤
)−1

1
N

N∑
i=1

exp
{

1
λ

∫ T

t
cs(x

i
s , u

i
s)ds

}
ht(xt)ϵ

√
∆t

1
N

N∑
i=1

exp
{

1
λ

∫ T

t
cs(x i

s , ui
s)ds

} a.s.→ θ∗t

where ϵ ∼ N (0, 1)
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Minimax Game⇒ Risk Sensitive Control
Q: Can we solve the minimax game (equiv. risk-sensitive control problem)
with Monte Carlo?

Assumption 1: The cost function ct is quadratic in ut :

ct(xt , ut) = ℓt(xt) +
1
2
u⊤
t Rt(xt)ut where Rt(xt) ⪰ 0 for all t

Assumption 2: For all (x , t), there exists a constant 0 < ξ < λ satisfying:

ht(xt)h
⊤
t (xt)︸ ︷︷ ︸

noise covariance

=ξgt(xt)R
−1
t (xt)︸ ︷︷ ︸

inverse of control cost

g⊤
t (xt).
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Controller’s Problem: Risk Sensitive Control
Define the value function

Vt(xt)= min
u

λ logEQ

[
exp

(
1
λ

∫ T

t

{
ℓs(xs)+

1
2
u⊤s Rsus

}
ds

)]

Theorem
The solution of the above problem exists, is unique and is given by a

Vt(xt) = −γ logEZ

[
exp

{
−

1
γ

∫ T

t
ℓs(xs)ds

}]
where γ =

ξλ

λ− ξ

and Z is the probability measure defined by the “passive" dynamics dxt = ftdt + htdwt .
Furthermore, the optimal controller signal u∗t is given by

u∗t dt=Ht(xt)
EZ

[
exp

{
− 1

γ

∫ T
t ℓs(xs)ds

}
ht(xt)dwt

]
EZ

[
exp

{
− 1

γ

∫ T
t ℓs(xs)ds

}]
where

Ht(xt)=R−1
t g⊤

t (xt)

(
gt(xt)R

−1
t g⊤

t (xt)−
1
λ
ht(xt)ht(xt)

⊤
)−1

a Broek et al., “Risk sensitive path integral control", arXiv preprint arXiv:1203.3523 2012.
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Policy Synthesis by Monte Carlo: Path Integral Control

▶ Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

−γ log

 1
N

N∑
i=1

exp

{
− 1
γ

∫ T

t

ℓs(x
i
s)ds

} a.s.→ Vt(xt)

Here, {x i
s , t ≤ s ≤ T}Ni=1 are randomly drawn sample paths by running

dxt = ft(xt)dt + ht(xt)dwt

▶ Direct computation of the optimal control (attack mitigating policy)

Ht(xt)

1
N

N∑
i=1

exp
{
− 1

γ

∫ T

t
ℓs(x

i
s)ds

}
ht(xt)ϵ

√
∆t

1
N

N∑
i=1

exp
{
− 1

γ

∫ T

t
ℓs(x i

s)ds
} a.s.→ u∗

t

where ϵ ∼ N (0, 1)
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Two-Player Zero-Sum Stochastic Differential Game
Girsanov Theorem:

D(P∥Q) = EP log
dP

dQ
= EP

[∫ T

0
θ⊤t dwt +

1
2

∫ T

0
∥θt∥2dt

]
=

1
2
EP

[∫ T

0
∥θt∥2dt

]
.

Assumption 3: For all (x , t), there exists a constant α > 0 satisfying the following
equation:

ht(xt)h
⊤
t (xt)︸ ︷︷ ︸

noise covariance

=α

gt(xt) R
−1
t (xt)︸ ︷︷ ︸

inverse of control cost

g⊤
t (xt)−

1
λ
ht(xt)h

⊤
t (xt)

.
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Two-Player Zero-Sum Stochastic Differential Game
Define the value function

Vt(xt)=min
u

max
θ

EP
∫ T

t

(
ℓs(xs)+

1
2
u⊤s Rsus−

λ

2
∥θs∥2

)
ds.

Theorem
The solution of the above problem exists, is unique and is given by a

Vt(xt) = −α logEZ

[
exp

{
−

1
α

∫ T

t
ℓs(xs)ds

}]
and Z is the probability measure defined by the “passive" dynamics dxt = ftdt + htdwt .
Furthermore, the saddle-point policies are given by

u∗t dt=Hu
t

EZ
[
exp

{
− 1

α

∫ T
t ℓsds

}
htdwt

]
EZ

[
exp

{
− 1

α

∫ T
t ℓsds

}] , θ∗t dt=Hθ
t

EZ
[
exp

{
− 1

α

∫ T
t ℓsds

}
htdwt

]
EZ

[
exp

{
− 1

α

∫ T
t ℓsds

}]
where

Hu
t =R−1

t g⊤
t

(
gtR

−1
t g⊤

t −
1
λ
hth

⊤
t

)−1
, Hθ

t =−
1
λ
h⊤t

(
gtR

−1
t g⊤

t −
1
λ
hth

⊤
t

)−1

a Patil et al., “Risk-minimizing two-player zero-sum stochastic differential game via path integral control", Conference
on Decision and Control, 2023.
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Policy Synthesis by Monte Carlo: Path Integral Control

▶ Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

−α log
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Controller’s Problem
Q: Are the path integral solutions of risk-sensitive control and two-player
zero-sum stochastic differential game the same?

We derived the path integral solutions under two seemingly different
assumptions for each problem.

It turns out these two assumptions are essentially identical⇒ The path
integral solutions of risk-sensitive control and two-player zero-sum stochastic
differential game are the same !!
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Simulation Results
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Simulation Results

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

No attack, Pcrash ≈ 0

Stealthy attack, λ = 1.5, Pcrash ≈ 0.05

Stealthy attack, λ = 0.05, Pcrash ≈ 0.52
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Simulation Results min
u

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

No attack, Pcrash ≈ 0 Stealthy attack, λ = 1.5, Pcrash ≈ 0.05

Stealthy attack, λ = 0.05, Pcrash ≈ 0.52 Attack mitigation, λ = 0.05, Pcrash ≈ 0
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Simulation Results

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

No attack, Pcrash ≈ 0.01

Stealthy attack, λ = 2, Pcrash ≈ 0.17

Stealthy attack, λ = 0.8, Pcrash ≈ 0.91
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Simulation Results min
u

max
θ

EP

[∫ T

0
ct(xt , ut)dt

]
− λD(P∥Q)

No attack, Pcrash ≈ 0.01 Stealthy attack, λ = 2, Pcrash ≈ 0.17

Stealthy attack, λ = 0.8, Pcrash ≈ 0.91 Attack mitigation, λ = 0.8, Pcrash ≈ 0.02
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Simulation Results



36/48

Summary

▶ We developed a path-integral-based method to synthesize worst-case
stealthy attacks in real time for nonlinear continuous-time systems

▶ To mitigate the risk of stealthy attacks, we proposed a novel zero-sum
game formulation

▶ We provided a path-integral-based approach for controller to
synthesize the attack mitigating control inputs online

▶ We showed that the path integral solution to the risk-sensitive control
coincides with that of two-player zero-sum stochastic differential game

▶ Publications:
– A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive

Control via Path Integral Approach," 2023 IEEE Conference on Decision and
Control (CDC)

– A. Patil, K. Morgenstein, L. Sentis, T. Tanaka, “Stealthy Attack Synthesis and
Its Mitigation for Nonlinear Cyber-Physical Systems: Path Integral
Approach," to be submitted
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Today’s Talk: Overview
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Research Motivation and Prior Work

▶ The outcome of Monte Carlo simulation is probabilistic and suboptimal when the
sample size is finite⇒ applying path integral controller to safety-critical systems
would require rigorous sample complexity analysis.

▶ Not enough work has been done on the sample complexity analysis of path
integral control except the work by [Yoon 2022]2.

▶ Contributions of [Yoon 2022]: The authors considered the continuous-time path
integral control, and applied Chebyshev and Hoeffding inequalities to relate the
instantaneous (pointwise-in-time) error bound in control input and the sample
size of the Monte-Carlo

▶ Limitations of [Yoon 2022]:
– The effect of time discretization is not addressed.
– It is not clear how the pointwise-in-time bound can be translated into an

end-to-end (trajectory-level) error bound.
– The work does not compute the required sample size to achieve an

acceptable loss of control performance.

2 Yoon, Hyung-Jin, et al., "Sampling complexity of path integral methods for trajectory optimization," 2022 American
Control Conference (ACC).
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integral control, and applied Chebyshev and Hoeffding inequalities to relate the
instantaneous (pointwise-in-time) error bound in control input and the sample
size of the Monte-Carlo

▶ Limitations of [Yoon 2022]:
– The effect of time discretization is not addressed.
– It is not clear how the pointwise-in-time bound can be translated into an

end-to-end (trajectory-level) error bound.

– The work does not compute the required sample size to achieve an
acceptable loss of control performance.

2 Yoon, Hyung-Jin, et al., "Sampling complexity of path integral methods for trajectory optimization," 2022 American
Control Conference (ACC).
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Our Contributions
(1) Derivation of a path integral formulation for discrete-time stochastic

Linear Quadratic Regulator (LQR) using Kullback-Leibler (KL) control
problem

(2) Derivation of an end-to-end (trajectory-level) bound on the error
between the optimal control signal (computed by the classical Riccati
solution) and the one obtained by the path integral method as a
function of sample sizes
Our analysis reveals that the sample size required exhibits a
logarithmic dependence on the dimension of the control input.

While the stochastic LQR problem can be efficiently solved by the backward
Riccati recursion, our primary focus is to establish the foundation for a
sample complexity analysis of the path integral method when the analytical
expressions of optimal control law and the cost are available.
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Stochastic LQR: Classical Solution

▶ Compute the state feedback policy ut = kt(xt) that solves

min
{kt (·)}T−1

t=0

E
T−1∑
t=0

(
1
2
X⊤

t MtXt+
1
2
U⊤

t NtUt

)
+E
(

1
2
X⊤

TMTXT

)
s.t. Xt+1=AtXt+BtUt+Wt , Wt ∼ N (0,Ωt), X0 = x0.

▶ Optimal policy by solving backward Riccati Recursion

ut = kt(xt) = Ktxt , Kt = −(B⊤
t Θt+1Bt + Nt)

−1B⊤
t Θt+1At

where {Θt}Tt=0 is a sequence of positive definite matrices computed by
the backward Riccati recursion with ΘT = MT :

Θt = A⊤
t Θt+1At +Mt − A⊤

t Θt+1Bt(B
⊤
t Θt+1Bt + Nt)

−1B⊤
t Θt+1At .
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Stochastic LQR: Path Integral Solution

▶ At every time-step t , sample nt trajectories {xt:T (i), ut:T−1(i)}nti=1 from
the "uncontrolled" dynamics: Xt+1 = AtXt +Wt ,Wt ∼ N (0,Ωt)

▶ Compute the state-dependent path cost of each sample path i :

r(i)=exp

(
− 1
λ

∑T

k=t

1
2
xk(i)

⊤Mkxk(i)

)

▶ Path integral LQR controller:

ût =

nt∑
i=1

r(i)∑nt
i=1 r(i)

ut(i).

▶ Does not require solving backward Riccati equation ©
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Sample Complexity Analysis

▶ Define the empirical means of the numerator and the denominator as

Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
and Ê r

t =

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of

positive numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt .
Suppose α+ β < 1. If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê

r
t+∥Ê ru

t ∥∞
)√

1
2 log 2

αt

)2
ϵ2t (Ê

r
t )4

and Ê r
t >

√
1

2nt
log 2

αt
, then ∥û − u∥2

∞ :=
∑T−1

t=0 ∥ût − ut∥2
∞ ≤ ϵ with

probability greater than or equal to 1 − α− β.
▶ The required number of samples depends only logarithmically on the

dimension of the control input m.
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t =

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of

positive numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt .
Suppose α+ β < 1.

If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê
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Example
LQR problem: At =

[
0.9 −0.1
−0.1 0.8

]
, Bt =

[
1
0

]
, Ωt =

[
4 0
0 0

]
,Mt = 0.1I ,

Nt = 10. I represents an identity matrix of size 2 × 2.
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Example
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Figure: ϵ0 and LQR cost vs sample size
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Summary

▶ We derived a path integral formulation for a discrete-time stochastic
LQR problem.

▶ An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

▶ Future work:
– Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time
Stochastic LQR via Path Integral Control and Its Sample Complexity
Analysis," IEEE Control Systems Letters (L-CSS)



45/48

Summary

▶ We derived a path integral formulation for a discrete-time stochastic
LQR problem.

▶ An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

▶ Future work:
– Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time
Stochastic LQR via Path Integral Control and Its Sample Complexity
Analysis," IEEE Control Systems Letters (L-CSS)



45/48

Summary

▶ We derived a path integral formulation for a discrete-time stochastic
LQR problem.

▶ An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

▶ Future work:
– Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time
Stochastic LQR via Path Integral Control and Its Sample Complexity
Analysis," IEEE Control Systems Letters (L-CSS)



45/48

Summary

▶ We derived a path integral formulation for a discrete-time stochastic
LQR problem.

▶ An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

▶ Future work:
– Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time
Stochastic LQR via Path Integral Control and Its Sample Complexity
Analysis," IEEE Control Systems Letters (L-CSS)



46/48

Publications
Journal Publications

▶ A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample
Complexity Analysis," IEEE Control Systems Letters (L-CSS)

▶ A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time
Chance-Constrained Stochastic Optimal Control," submitted to Transactions on Automatic Control

▶ A. Patil, K. Morgenstein, L.Sentis, T. Tanaka, “Stealthy Attack Synthesis and Its Mitigation for Nonlinear
Cyber-Physical Systems: Path Integral Approach," to be submitted

▶ M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in
Obstructed Environments," to be submitted

Conference Publications
▶ A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space Projection and Path Integral

Approach," 2025 American Control Conference (ACC)
▶ A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample

Complexity Analysis," 2024 IEEE Conference on Decision and Control (CDC)
▶ A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control via Path Integral

Approach," 2023 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential

Game via Path Integral Control," 2023 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, T. Tanaka, “Upper and Lower Bounds for End-to-End Risks in Stochastic Robot Navigation," 2023 IFAC

World Congress
▶ A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path

Integral and Finite Difference Methods," 2022 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, T. Tanaka, “Upper Bounds for Continuous-Time End-to-End Risks in Stochastic Robot Navigation,"

2022 European Control Conference (ECC)
▶ C. Martin A. Patil, W. Li, T. Tanaka, D. Chen, “Model Predictive Path Integral Control for Roll-to-Roll

Manufacturing," to be submitted



46/48

Two-Player Zero-Sum Game
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Zero-Sum Game Stochastic Differential Game (SDG)
▶ Control using an uncertain actuator:

dx(t) = f (x(t), t)dt + G(x(t), t)
(
u(x(t), t)dt + v(x(t), t)dt + dw(t)︸ ︷︷ ︸

Uncertain control input

)
▶ v(x(t), t): Non-stochastic uncertainty: unmodeled

bias, fatigue. It is reasonable to assume v is bounded,
but the control designer should assume the most
pessimistic scenario.

▶ w(t): Stochastic uncertainty
▶ Control designer wants to minimize

Ex0,t0

[
ϕ (x(tf )) +

∫ tf
t0

( 1
2u

⊤Ruu + V
)
dt
]
under the presence of v and w.

▶ Zero-sum SDG

min
u

max
v

Ex0,t0

[
ϕ (x(tf ))+

∫ tf

t0

(
1
2
u⊤Ruu−

1
2
v⊤Rvv+V

)
dt

]
s.t. dx =fdt + Guudt + Gvvdt +Σdw .
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Zero-Sum Game Stochastic Differential Game (SDG)

▶ Our Contributions:
– We convert the problem of two-player zero-sum SDG as a
problem of solving a Hamilton-Jacobi-Isaacs (HJI) PDE with
Dirichlet boundary condition.

– We develop a path-integral framework to solve the HJI PDE and
establish the existence and uniqueness of the saddle point
solution (optimal solution of the game).

– We obtain explicit expressions for the saddle-point policies which
can be numerically evaluated using Monte Carlo simulations.

– Our approach allows the game to be solved online without the
need for any offline training or precomputations.

– Publication
A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing
Two-Player Zero-Sum Stochastic Differential Game via Path
Integral Control," 2023 IEEE Conference on Decision and Control (CDC)
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– We obtain explicit expressions for the saddle-point policies which
can be numerically evaluated using Monte Carlo simulations.

– Our approach allows the game to be solved online without the
need for any offline training or precomputations.

– Publication
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Optimal Deception by Path Integral Control

▶ Problem Setup
– A supervisor wants an agent to reach the target as soon as
possible (reference policy)

– The agent, on the other hand, wishes to avoid the regions covered
under fire (deviated policy)

– How can the agent satisfy their own interest by deviating from the
reference policy without being detected by the supervisor?
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Our Contributions
▶ We formalize the synthesis of an optimal deceptive policy as a KL

control problem. We introduce KL divergence as a stealthiness measure
using motivations from hypothesis testing theory.

min
Q

EQ

T∑
t=0

Ct(Xt ,Ut) + λD(Q||R)

where R is the reference policy and Q is the deviated policy.

▶ We solve the KL control problem using backward dynamic
programming. Since dynamic programming suffers from the curse of
dimensionality, we develop an algorithm based on path integral control
to numerically compute the optimal deceptive actions online using
Monte Carlo simulations without explicitly synthesizing the policy.

▶ We show that our proposed algorithm asymptotically converges to the
optimal action distribution of the deceptive agent as the number of
samples goes to infinity.

▶ Publication:
A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control
via Path Integral Approach," 2023 IEEE Conference on Decision and Control (CDC)
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Conventional Task Hierarchical Control
▶ Task 1: Avoid collisions with obstacles
▶ Task 2: Steer the platoon’s centroid

towards a goal position
▶ Task 3: Maintain specific distances

between the agents

▶ Simple controllers (such as PID) are used for Ki to achieve reference
tracking in task coordinate σi (t)

▶ Reference signals σref
i (t) are often chosen manually.
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Task Hierarchical Control via Path Integral Method

▶ Path integral controller seeks the optimal input for some of the tasks,
while rudimentary controllers can be kept for other tasks.

▶ Manuscript:
A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space
Projection and Path Integral Approach," American Control Conference (ACC) 2025
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