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What is Path Integral Control?

» Path integral control solves stochastic optimal control problems. It
computes optimal control input online (in real-time) via Monte-Carlo
simulations.

» The optimal control input is computed via the empirical mean of the
path cost ("path integral") of simulated sample paths.
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What is Path Integral Control? (Solution via HJB PDE)

Derivation by [Kappen 2005]
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What is Path Integral Control? (Solution via KL Control)

Derivation by [Theodorou and Todorov 2012]

Girsanov
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min E” [C(x)] + AD(P| Q)
P N——

KL Divergence

KL Divergence: D(P||Q) := / |0g ap (X)P(dx)
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Solution of KL Control using Path Integral Method

> P, Q: Probability distributions

» C: X — R: cost function

» For A\ > 0, the KL control problem:

min E” [C(x)] + AD(P| Q)
P N——

KL Divergence

KL Divergence: D(P||Q) ::/ |0g ap (X)P(dx)

Then according to the Legendre's duality,

min E7 [C(x)] + AD(P||Q) = A log| B2 | {exp {,,C X)H

Free energy

~ —Alog /{/ﬁ; [exp {—%C(i)(x)}}

Monte Carlo
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Why Path Integral Control?

Why Path Integral Control?

Simulator-driven:
no model required

One shot,
online method

Works with non-linear systems
and cost functions

Can be applied to

stochastic systems

MC simulations can be
parallelized on GPUs

Less susceptible to
curse of dimensionality
No pretraining
required
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Why Path Integral Control?

Neural PDE solvers can solve high-dimensional HJB PDEs using deep neural

networks (DNN).
; P . . - e . Terminal
Value function ——{ ut.X,) } o utt X,) ) { U X) f——> e (i) (utv, X)) +— oo dition
Gradient of the J
A Vuulto. Xi,) Vuultr. X)) Vit X) — Vultyor. X))
value function
@) ) : e
Feedforward T —TT -
neural network H
P o S P —
- CH) s
—— —— e
State Xo ) ( x, )} { X, —+— o Xo
Training data: < W, = W, S Wiy = Wo,
normal noise

oy Discretized
=N —
time steps

" Han et al., “Solving high-dimensional partial differential equations using deep learning", Proceedings of the National
Academy of Sciences 115.34, 2018.
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Why Path Integral Control?

Neural PDE solvers can solve high-dimensional HJB PDEs using deep neural
networks (DNN).

> Extensive training required

7 D @ \ - S Terminal
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Gradient of the
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neural network : H H
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" Han et al., “Solving high-dimensional partial differential equations using deep learning", Proceedings of the National
Academy of Sciences 115.34, 2018.
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Why Path Integral Control?

Neural PDE solvers can solve high-dimensional HJB PDEs using deep neural
networks (DNN).

> Extensive training required

> Careful DNN construction and hyperparameter tuning required

. N P . , N Terminal
Value function —.( ulto, X, o u(n. X,) | (u(xz,x.,)) ------ ‘:“"N-'-"'nr": €& ) —— condition
Gradient of the
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Feedforward - -
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D, 3 s o 3
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time steps

" Han et al., “Solving high-dimensional partial differential equations using deep learning", Proceedings of the National
Academy of Sciences 115.34, 2018.
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Why Path Integral Control?

Neural PDE solvers can solve high-dimensional HJB PDEs using deep neural
networks (DNN).

> Extensive training required
> Careful DNN construction and hyperparameter tuning required
» Difficult to provide optimality guarantees

. N P . , N Terminal
Value function —.( ulto, X, o u(n. X,) | (u(xz,x.,)) ------ ‘:“"N-'-"'nr": €& ) —— condition
Gradient of the
3 Vulto, Xi;) Vu(ty, X;,) Vu(t, X)) — . Vulty-1.X,.,)
value function
QD) ) : (i
Feedforward - -
neural network : H H H
o P S S S
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R R B
State Xo ) ( x, ) G L, . X, X
D, 3 s o 3
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normal noise
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" Han et al., “Solving high-dimensional partial differential equations using deep learning", Proceedings of the National
Academy of Sciences 115.34, 2018.
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Stealthy Attack Synthesis and Its Mitigation for Nonlinear Systems
Background
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Stealthy Vehicle Misguidance and Its Mitigation

J. Bhatti and T. E. Humphreys, "Hostile control of ships via false GPS signals:
Demonstration and detection," NAVIGATION: Journal of the Institute of Navigation, 2017.




ool of Engineering

Inspired by the GPS spoofing demonstration, we formulate a stochastic
zero-sum game to analyze the competition between

> Attacker, who tries to misguide the vehicle to an unsafe region covertly,
and

» Controller, who tries to mitigate the impact of attack signals
14/48



The University of Texas at Austin
Cockrell School of Engineering

Stealthy Attack on Cruise Control

> The attacker injects a
disturbance signal to
degrade the control
performance stealthily

> The legitimate controller
tries to bring the vehicle
state to a nominal level

Avg. cost per time

s 10 150 200 250 300
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Stealthy Attack on Cruise Control

No attack Under attack > The attacker injects a
disturbance signal to
degrade the control
performance stealthily

> The legitimate controller
tries to bring the vehicle
state to a nominal level

Avg. cost per time

s 10 150 200 250 300

> Q: How to synthesize the worst-case attack for nonlinear systems while
remaining stealthy? (Attacker’s problem)

> Q: How to mitigate the impact of stealthy attacks? (Controller's problem)
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Stealthy Attack Synthesis and Its Mitigation for Nonlinear Systems

Problem Setup
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Problem Setup

o ™ » Attack model:

dv: = dw; (No attack)
dv: = 0:dt + dw;: (Under attack)

Controlled system
dx; = (fy + geup)dt + hedv,

0: is a feedback policy.
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Problem Setup

o ™ » Attack model:

Controlled system
dx; = (fy + geup)dt + hedv,

N dv: = dw; (No attack)
dv: = 0:dt + dw;: (Under attack)

0: is a feedback policy.

» Controller can apply a legitimate control
input u; to combat with the noise w; and
the potential attack input 6,

.
min mgax]EP {/ ci(xt, ut)dt} —\ x (Attack Detectability)
u 0

e.g., penalty for going off-road

A > 0 captures the trade-off between an attacker’s desire to remain stealthy
and its goal of degrading system performance.
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Problem Setup

o ™ » Attack model:

Controlled system
dx; = (fy + geup)dt + hedv,

N dv: = dw; (No attack)
dv: = 0:dt + dw;: (Under attack)

0: is a feedback policy.

» Controller can apply a legitimate control
input u; to combat with the noise w; and
the potential attack input 6,

.
min mgax]EP {/ ci(xt, ut)dt} —\ x (Attack Detectability)
u 0

e.g., penalty for going off-road

A > 0 captures the trade-off between an attacker’s desire to remain stealthy
and its goal of degrading system performance.

Q: How to quantify the "attack detectability"?



The University of Texas at Austin

Cockrell School of Engineering

KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack



The University of Texas at Austin

Cockrell School of Engineering

KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack

> Type | error (false alarm): Q(A)

> Type Il error (failure of detection): P(A<)



The University of Texas at Austin

Cockrell School of Engineering

KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack

> Type | error (false alarm): Q(A)
Type Il error (failure of detection): P(A<)
> KL divergence provides lower bounds to the total probability of errors

v

1
Pinsker
508 BH
s /1
208 Q(A) + P(A°) >1— 5D(P||Q) Pinsker's inequality
% 0.4
g 1
Eo2 Q(A) + P(AC) > 5 exp(—D(P||Q)) Bretagnolle-Huber
% 4 inequality

1 2 3
KL Divergence [nats]



The University of Texas at Austin

Cockrell School of Engineering

KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack

> Type | error (false alarm): Q(A)
Type Il error (failure of detection): P(A<)
> KL divergence provides lower bounds to the total probability of errors

v

1
Pinsker
508 BH
s /1
208 Q(A) + P(A°) >1— 5D(P||Q) Pinsker's inequality
% 0.4
g 1
Eo2 Q(A) + P(AC) > 5 exp(—D(P||Q)) Bretagnolle-Huber
% 4 inequality

1 2 3
KL Divergence [nats]

-
Mini-max KL Control Problem:  min max EP {/ ce(xe, ut)dt} — AD(P||Q)
v 0



The University of Texas at Austin

Cockrell School of Engineering

KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack
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the dynamics with and without attack signals
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KL Divergence: A Detectability Measure?

> Let P be the measure when the system is under attack, and Q be the measure
when the system is under no attack

> Type | error (false alarm): Q(A)
Type Il error (failure of detection): P(A<)
> KL divergence provides lower bounds to the total probability of errors

v

1
Pinsker
508 BH
s /1
208 Q(A) + P(A°) > 1 — 5D(P||Q) Pinsker's inequality
% 0.4
g 1
Eo2 Q(A) + P(AC) > 5 exp(—D(P||Q)) Bretagnolle-Huber
% 4 inequality

1 2 3
KL Divergence [nats]

-
Mini-max KL Control Problem:  min max EP {/ ce(xe, ut)dt} — AD(P||Q)
v 0

s.t. dXt = (ft —+ gtut) dt + ht (tht + th)

The KL divergence captures the distance between the probability measures defined by
the dynamics with and without attack signals
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Minimax KL control
T
min max EP U c(xy, up)dt| — AD(P||Q)
u
o
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Minimax KL Control, Risk-Sensitive Control and
Two-Player Zero-Sum Stochastic Differential Game

Minimax KL control
7
min max EP U c(xe, up)dt| — AD(P||Q)
u
0

Legendre
Duality Girsanov Theorem

Risk-sensitive control Two-player zero-sum stochastic differential game
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i Q - Z3T; i P TRy -2 2
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Minimax KL Control, Risk-Sensitive Control and
Two-Player Zero-Sum Stochastic Differential Game

Minimax KL control
7
min max EP U c(xe, up)dt| — AD(P||Q)
u
0

Legendre
Duality Girsanov Theorem
Risk-sensitive control Two-player zero-sum stochastic differential game
17 1 T 1 i
i Q - Z3T; i P ZuTRu. == 2
n}tml logE [exp (l L {{’(xt) + Fut Rut} dt)] min max E J; {#(xt) + Fut Ru, 2 116¢ 1] }

We will take the variational approach to solve these problems numerically!
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Stealthy Attack Synthesis and Its Mitigation for Nonlinear Systems

Attacker’s Problem
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min| maxE” [/ Ct(Xtyut)dt:| - AD(PIQ)
u 6 0
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Attacker's Problem

Suppose controller’s policy u; is fixed. Let's focus on the inner maximization problem

p
min| maxE” [/ Ct(Xtyut)dt:| - AD(PIQ)
u 6 0

Theorem (Legendre Duality)

The value function of the above problem

Vi(xt) := maxg EP [ftT cs(xs, us)ds] — AD(P||Q) exists, is unique and is given by

Vi(xt) = A log E [exp {% /tT Cs(xs, us)dsH

free energy

Furthermore, the optimal attack signal 85 is given by

L _1 E@ [exp{% ftTCs(X57 us)ds}ht(xt)dwt]
O de=he (x) (ht(Xt)ht(Xt)T) EQ [exp{% Jes(xs, uS)dS}]
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Attacker's Problem

Suppose controller’s policy u; is fixed. Let's focus on the inner maximization problem

p
min| maxE” [/ Ct(Xtyut)dt:| - AD(PIQ)
u 6 0

Theorem (Legendre Duality)

The value function of the above problem
Vi(xt) := maxg EP [ftT cs(xs, us)ds] — AD(P||Q) exists, is unique and is given by

Vi(xt) = A log E [exp {% /tT Cs(xs, us)dsH

free energy

Furthermore, the optimal attack signal 85 is given by
—1 IEQ [exp{% ftTCS(Xs, Us)ds}ht(Xt)th]
EQ [exp{% ftTcs(xs, us)ds}]

0rdt=h, (x) (ht(Xt)ht(Xt)T)

> Recall Q is the probability measure in which dv; = 6:dt + dw; is a standard
Browninan motion (i.e. ; = 0)

> [E@[] can be estimated from simulated trajectories of dx; = frdt + grurdt 4 hrdwy
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Attack Synthesis by Monte Carlo: Path Integral Control

» Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

1 N 1 /7 o
Alog NZ exp{x/t cs(xs',u;)ds} = Vie(xe)

Here, {x{,ul,t < s < T}", are randomly drawn sample paths by
running dxe = fi(x¢)dt + ge(xe)urdt + he(xe)dwy
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Attack Synthesis by Monte Carlo: Path Integral Control

» Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

1 N 1 /7 o
Alog NZ exp{x/t cs(xs',u;)ds} = Vie(xe)

Here, {x{,ul,t < s < T}", are randomly drawn sample paths by
running dxe = fi(x¢)dt + ge(xe)urdt + he(xe)dwy
> Direct computation of the optimal control (worst and stealthiest attack)

=|

N
1 o
- e { % J i ul)ds (e
-1 i=1
h;r(Xt) (ht(Xt)hr(X:)T) ag 0

N
% Z exp{% ftT cs(xd, u;')ds}

where € ~ N(0,1)

5
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Stealthy Attack Synthesis and Its Mitigation for Nonlinear Systems

Controller's Problem
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Minimax Game = Risk Sensitive

Control

Q: Can we solve the minimax game (equiv. risk-sensitive control problem)

with Monte Carlo?

rol

T
muinE;gax EP Uo ¢, up)dt

—AD(P|IQ)

L Minimax KL cont

Legendre
Duality

Risk-sensitive control

P
min[l log E¢ [exp (;J {#(x[) + %utTRut} dt)]]
® 0
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Minimax Game = Risk Sensitive Control

Q: Can we solve the minimax game (equiv. risk-sensitive control problem)
with Monte Carlo?

Minimax KL control
T
minE;gx EP U c(xg, u)dt| — AD(P||Q)
u
o
Legendre

Duality

Risk-sensitive control

) i 1
min|Alog E€ |exp —J 2(x;) + sul Ru, tdt

u Ay 2

Assumption 1: The cost function c¢; is quadratic in u;:

ce(xe, ur) = Le(xe) + %utTRt(xt)ut where R(x;) = 0 forall ¢

Assumption 2: For all (x, t), there exists a constant 0 < & < A satisfying:
he(xe)hy (x) =€ge(x) R (x) &' (x)-
N ——— N——

noise covariance inverse of control cost
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Controller's Problem: Risk Sensitive Control

Define the value function

1,7 1
Vi(x¢) = min A IogI[‘EQ {exp(x/ {Zs(xs)—i-iuz Rsus} ds)}
u t
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Controller's Problem: Risk Sensitive Control

Define the value function

1,7 1
Vi(x¢) = min A IogI[‘EQ {exp(x/ {Zs(xs)—i-iuz Rsus} ds)}
u t

Theorem

The solution of the above problem exists, is unique and is given by ¢

T
Vi(xe) = —v IogIEZ |:exp {—%/t Zs(xs)ds}] where v = %

and Z is the probability measure defined by the “passive" dynamics dx; = fydt + htdws.
Furthermore, the optimal controller signal uj is given by

EZ [exp{— 10 es(xs)ds} ht(xt)dwt]

) e[ 17T ts0)as]]

MR ) =R e (xt)(gxxf)R;lg? (x) - §ht(n)hf(x:f)_

? Broek et al., “Risk sensitive path integral control", arXiv preprint arXiv:1203.3523 2012.

N
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Policy Synthesis by Monte Carlo: Path Integral Control

» Direct computation of the value function by Monte Carlo (without

solving backward HJB!)

L
— log NZ

exp{’ly/tTZs(X;)ds}] 3 Vi(x)

Here, {x{,t < s < T}", are randomly drawn sample paths by running

dXt = ﬂ(Xt)dt =+ ht(Xt)th
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Policy Synthesis by Monte Carlo: Path Integral Control

» Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

—~log [ %i exp{i/tws(x;)ds}] 22 Vi(xe)

Here, {x{,t < s < T}", are randomly drawn sample paths by running
dXt = ﬂ(Xt)dt =+ ht(Xt)th
> Direct computation of the optimal control (attack mitigating policy)

N
1 i
> lexp{ 2 [ £u(xd)ds fhe(xi)e
i=1
Ht(xt) % U:

1< —
NZ exp{—%ft Ks(xs’)ds}

where € ~ N(0,1)

=|
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Two-Player Zero-Sum Stochastic Differential Game

Girsanov Theorem:
-
D(P|Q) = ]EPIog —EP[/ o7 dwe + = / |0||2dt] JEPU H0t||2dt}.
0

Minimax KL control

: o
rrhinmgaxlEP U c(xe, up)dt| —[AD(P]|Q)
(]

Legendre
Duality Girsanov Theorem
Risk-sensitive control Two-player zero-sum stochastlc dlfferentlal game

1 (7 1
n}‘inllog E? [exp (1.’- {f(xf) + Eu{Ru,} dt)] mm max ]Epf {{’(xt) +-ulRu, —|= IIt‘)tIIZ
0

Assumption 3: For all (x, t), there exists a constant o > 0 satisfying the following
equation:

he(xe)hi (xe)=c | ge(xe) Ry H(xe) & (Xt)—*ht(Xt)h (xt)| -
— N——

noise covariance inverse of control cost
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Two-Player Zero-Sum Stochastic Differential Game

Define the value function

Y 1 A
Vi(x¢) =min meaxIEFf (Ks(xs)-i-au—sr Rsus— 5 H05||2) ds.
Y t

Theorem

The solution of the above problem exists, is unique and is given by ¢

Vi(xt) = —alog EZ [exp {,é /ths(xs)ds}]

and Z is the probability measure defined by the “passive" dynamics dx; = fydt + hedws.
Furthermore, the saddle-point policies are given by

B7 [exp{ 2 J,T tods fhediw:] 57 [exp{ 1 J,T tods fhedw:]

urdt="H! = , 07 dt =Y =
EZ [exp{fé IR ésds}] EZ [exp{fé IR sts}]
where
u —1_ T IR U 6 1 T o7 1 T_l
Hi=R; g (8tR; "8 _Xhtht ) Ht:_xht gtR, "8 — thht

? patil et al., “Risk-minimizing two-player zero-sum stochastic differential game via path integral control", Conference |-
on Decision and Control, 2023. -
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Policy Synthesis by Monte Carlo: Path Integral Control

» Direct computation of the value function by Monte Carlo (without
solving backward HJB!)

—alog [ %i exp{;/tTgs(X;)ds}] 22 Vi(xe)

Here, {x{,t < s < T}", are randomly drawn sample paths by running
dXt = ﬂ(Xt)dt =+ ht(Xt)th
> Direct computation of the optimal control (attack mitigating policy)

N
1 .
3 exp{—gfffs(x;)ds}ht(xt)e
i=1
He (xe) =

1< —
NZ exp{—éft és(xs’)ds}

where e ~ N(0,1)

=

)
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Controller's Problem

Q: Are the path integral solutions of risk-sensitive control and two-player
zero-sum stochastic differential game the same?

Minimax KL control

T
rx}}nmga\x]EP U c(x, up)dt| — AD(P||Q)
0

Legendre
Duality Girsanov Theorem

Risk-sensitive control

1 (7 1
min 1log E¢ [exp (—f {{’(xf) + —u{Rut} dt)]
0 1), 2

Two-player zero-sum stochastic differential game
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Q: Are the path integral solutions of risk-sensitive control and two-player
zero-sum stochastic differential game the same?

We derived the path integral solutions under two seemingly different
assumptions for each problem.

Minimax KL control

T
min max EP U c(x, up)dt| — AD(P||Q)
u 0
Legendre
Duality Girsanov Theorem

Risk-sensitive control Two-player zero-sum stochastic differential game

1T 1 . ) \] e T 1 i
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Controller's Problem

Q: Are the path integral solutions of risk-sensitive control and two-player
zero-sum stochastic differential game the same?

We derived the path integral solutions under two seemingly different
assumptions for each problem.

Minimax KL control

T
muinmgaxlEP U c(xy, up)dt| — AD(P||Q)
0

Legendre
Duality Girsanov Theorem

1. Jacobson 1973.

K . 2. Petersen, James, . K
Risk-sensitive control & Dupuis 2000. Two-player zero-sum stochastic differential game

1T 1 T 1 p!
i Q - —qT i P by _z 2
min AlogE [exp (A L {l(xt) + 2 U Rut} dt)] nzlm maaxIE fo {{’(xt) + 2 u; Rug 2 116: 11 }

It turns out these two assumptions are essentially identical =- The path
integral solutions of risk-sensitive control and two-player zero-sum stochastic
differential game are the same !!
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Summary

> We developed a path-integral-based method to synthesize worst-case
stealthy attacks in real time for nonlinear continuous-time systems

> To mitigate the risk of stealthy attacks, we proposed a novel zero-sum
game formulation

» We provided a path-integral-based approach for controller to
synthesize the attack mitigating control inputs online

» We showed that the path integral solution to the risk-sensitive control
coincides with that of two-player zero-sum stochastic differential game

» Publications:

- A.Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive
Control via Path Integral Approach," 2023 IEEE Conference on Decision and
Control (CDC)

- A. Patil, K. Morgenstein, L. Sentis, T. Tanaka, “Stealthy Attack Synthesis and
Its Mitigation for Nonlinear Cyber-Physical Systems: Path Integral
Approach," to be submitted
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» The outcome of Monte Carlo simulation is probabilistic and suboptimal when the
sample size is finite = applying path integral controller to safety-critical systems
would require rigorous sample complexity analysis.

2 Yoon, Hyung-Jin, et al., "Sampling complexity of path integral methods for trajectory optimization," 2022 American
Control Conference (ACC).
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Research Motivation and Prior Work

» The outcome of Monte Carlo simulation is probabilistic and suboptimal when the
sample size is finite = applying path integral controller to safety-critical systems
would require rigorous sample complexity analysis.

> Not enough work has been done on the sample complexity analysis of path
integral control except the work by [Yoon 2022]2.

» Contributions of [Yoon 2022]: The authors considered the continuous-time path
integral control, and applied Chebyshev and Hoeffding inequalities to relate the
instantaneous (pointwise-in-time) error bound in control input and the sample
size of the Monte-Carlo

> Limitations of [Yoon 2022]:
- The effect of time discretization is not addressed.
- Itis not clear how the pointwise-in-time bound can be translated into an
end-to-end (trajectory-level) error bound.
- The work does not compute the required sample size to achieve an
acceptable loss of control performance.

2 Yoon, Hyung-Jin, et al., "Sampling complexity of path integral methods for trajectory optimization," 2022 American
Control Conference (ACC).
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Our Contributions

(1) Derivation of a path integral formulation for discrete-time stochastic
Linear Quadratic Regulator (LQR) using Kullback-Leibler (KL) control
problem

(2) Derivation of an end-to-end (trajectory-level) bound on the error
between the optimal control signal (computed by the classical Riccati
solution) and the one obtained by the path integral method as a
function of sample sizes
Our analysis reveals that the sample size required exhibits a
logarithmic dependence on the dimension of the control input.

While the stochastic LQR problem can be efficiently solved by the backward
Riccati recursion, our primary focus is to establish the foundation for a
sample complexity analysis of the path integral method when the analytical
expressions of optimal control law and the cost are available.
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Stochastic LQR via Path Integral
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» Compute the state feedback policy u: = k:(x;) that solves
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Stochastic LQR: Classical Solution

» Compute the state feedback policy u: = k:(x;) that solves

T-1

min E (1 X, M X+ 1 U; N, Ut) +E (1x¥ MTXT>
N T—1 2 2 2

{ke()} 2o =0

s.t. Xf+1 :AtXtJrBtUtJr Wt, Wt ~ N(O, Qt), XQ = Xo.

» Optimal policy by solving backward Riccati Recursion
us = kt(Xt) = Kixt, Ki= *(B:@HlBt + Nt)ilBtTeHlAt

where {©,}{_, is a sequence of positive definite matrices computed by
the backward Riccati recursion with © 1 = Mr:

Or = Al O11A: + My — Al ©¢41Bi(B, ©¢1B: + Ni) B/ O A:.



The University of Texas at Austin

Cockrell School of Engineering

Stochastic LQR: Path Integral Solution

> Atevery time-step t, sample n; trajectories {xq7(i), ur7—1(i)}%, from
the "uncontrolled" dynamics: Xey1 = AcXe + Wi, Wi ~ N(0, Q)



The University of Texas at Austin

Cockrell School of Engineering

Stochastic LQR: Path Integral Solution

> Atevery time-step t, sample n; trajectories {xq7(i), ur7—1(i)}%, from
the "uncontrolled" dynamics: Xey1 = AcXe + Wi, Wi ~ N(0, Q)

» Compute the state-dependent path cost of each sample path i

17 1

r(i)=exp <7X - EXk(f)T’V’ka(f))



The University of Texas at Austin

Cockrell School of Engineering

Stochastic LQR: Path Integral Solution

> Atevery time-step t, sample n; trajectories {xq7(i), ur7—1(i)}%, from
the "uncontrolled" dynamics: Xey1 = AcXe + Wi, Wi ~ N(0, Q)
» Compute the state-dependent path cost of each sample path i

r(i)=exp <f% kT:t %Xk(f)TMka(f))

» Path integral LQR controller:



The University of Texas at Austin

Cockrell School of Engineering

Stochastic LQR: Path Integral Solution

> At every time-step t, sample n; trajectories {x.7(/), ur7—1(i)}1%, from

i=

the "uncontrolled" dynamics: Xey1 = AcXe + Wi, Wi ~ N(0, Q)
» Compute the state-dependent path cost of each sample path i

r(i)=exp <f% kT:t %Xk(f)TMka(f))

» Path integral LQR controller:
R ot r(i) .
uy = 7 uell)-
P savinl

» Does not require solving backward Riccati equation ©



The University of Texas at Austin

Cockrell School of Engineering

Outline

Sample Complexity of Path Integral for Discrete-Time Stochastic LQR

Sample Complexity Analysis



The University of Texas at Austin

Cockrell School of Engineering

Sample Complexity Analysis

> Define the empirical means of the numerator and the denominator as

= T ) g g i ()
t

ne



The University of Texas at Austin

Cockrell School of Engineering

Sample Complexity Analysis

> Define the empirical means of the numerator and the denominator as

- TarOu) oy gy Tart)
t

ne

> Theorem: Let {e:}/ 5", {ae} /5 and {Be} 5t be given sequences of
positive numbers and e .= >/t €?, o == Zt oo Bi=30
Suppose a + 5 < 1.



The University of Texas at Austin

Cockrell School of Engineering

Sample Complexity Analysis

> Define the empirical means of the numerator and the denominator as

- TarOu) oy gy Tart)
t

ne

> Theorem: Let {e:}/ 5", {ae} /5 and {Be} 5t be given sequences of
positive numbers and e .= >/t €?, o == Zt oo Bi=30
Suppose a + 3 < 1. If n; satisfies

2
<é: 2/[€llog 22 + (ecEr+ 1 2lloc) /3 log )

(Er)*

ne>

and E{ > 2%: log O%



The University of Texas at Austin

Cockrell School of Engineering

Sample Complexity Analysis

> Define the empirical means of the numerator and the denominator as

- TarOu) oy gy Tart)
t

ne

> Theorem: Let {e:}/ 5", {ae} /5 and {Be} 5t be given sequences of
positive numbers and e .= >/t €?, o == Zt oo Bi=30
Suppose a + 3 < 1. If n; satisfies

2
<é: 2/[€llog 22 + (ecEr+ 1 2lloc) /3 log )

(Er)*

ne>

and E/ > 2n log 2, then ||d — u||2, = 305" 16 — ue||% < ewith
probability greater than orequaltol —a — ,6.



The University of Texas at Austin

Cockrell School of Engineering

Sample Complexity Analysis

> Define the empirical means of the numerator and the denominator as

- TarOu) oy gy Tart)
t

ne

> Theorem: Let {e:}/ 5", {ae} /5 and {Be} 5t be given sequences of
positive numbers and e .= >/t €?, o == Zt oo Bi=30
Suppose a + 3 < 1. If n; satisfies

2
<é: 2/[€llog 22 + (ecEr+ 1 2lloc) /3 log )

(Er)*

ne>

and E/ > 2n log 2, then ||d — u||2, = 305" 16 — ue||% < ewith
probability greater than orequaltol —a — ,6.

» The required number of samples depends only logarithmically on the
dimension of the control input m.
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Example
.. |09 -01 |1 |40 B
LQR problem: A; = {_0'1 08 } B: = M,Qt = {0 O}' M; = 0.1/,
N; = 10. I represents an identity matrix of size 2 x 2.
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(a) State trajectory (b) Control input trajectory
with n = 103 with n = 103
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(c) State trajectory (d) Control input trajectory
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Summary

> We derived a path integral formulation for a discrete-time stochastic
LQR problem.

» An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

» Future work:

- Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

» Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time
Stochastic LQR via Path Integral Control and Its Sample Complexity
Analysis," IEEE Control Systems Letters (L-CSS)
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Zero-Sum Game Stochastic Differential Game (SDG)

» Control using an uncertain actuator:

dx(t) = F(x(t), t)dt + G(x(t), t)(u(x(t), t)dt + v(x(t), t)dt + dw(t))

Uncertain control input

> v(x(t), t): Non-stochastic uncertainty: unmodeled

bias, fatigue. It is reasonable to assume v is bounded BT
but the control designer should assume the most > 4
pessimistic scenario. T
» w(t): Stochastic uncertainty s
» Control designer wants to minimize
Eso.t0 [ )+ ft‘ (2uTRu+V) dt} under the presence of vand w.

» Zero-sum SDG
. M1 1+
min max Eyg ¢ (x(tr))+ Eu Ruu—iv R,v+V|dt
u v tD

s.t. dx =fdt + Gyudt + G, vdt + Xdw.
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» Our Contributions:

We convert the problem of two-player zero-sum SDG as a
problem of solving a Hamilton-Jacobi-Isaacs (HJI) PDE with
Dirichlet boundary condition.

We develop a path-integral framework to solve the H)I PDE and
establish the existence and uniqueness of the saddle point
solution (optimal solution of the game).

We obtain explicit expressions for the saddle-point policies which
can be numerically evaluated using Monte Carlo simulations.
Our approach allows the game to be solved online without the
need for any offline training or precomputations.

Publication

A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing
Two-Player Zero-Sum Stochastic Differential Game via Path
Integral Control," 2023 IEEE Conference on Decision and Control (CDC)
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Optimal Deception by Path Integral Control
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» Problem Setup

- Asupervisor wants an agent to reach the target as soon as
possible (reference policy)

- The agent, on the other hand, wishes to avoid the regions covered
under fire (deviated policy)

- How can the agent satisfy their own interest by deviating from the
reference policy without being detected by the supervisor?
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Our Contributions

> We formalize the synthesis of an optimal deceptive policy as a KL
control problem. We introduce KL divergence as a stealthiness measure
using motivations from hypothesis testing theory.

)
minEq " Gi(X,, Us) + AD(Q)IR)

t=0

where R is the reference policy and Q is the deviated policy.
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Our Contributions

> We formalize the synthesis of an optimal deceptive policy as a KL
control problem. We introduce KL divergence as a stealthiness measure
using motivations from hypothesis testing theory.

)
minEq " Gi(X,, Us) + AD(Q)IR)

t=0
where R is the reference policy and Q is the deviated policy.

» We solve the KL control problem using backward dynamic
programming. Since dynamic programming suffers from the curse of
dimensionality, we develop an algorithm based on path integral control
to numerically compute the optimal deceptive actions online using
Monte Carlo simulations without explicitly synthesizing the policy.

» We show that our proposed algorithm asymptotically converges to the
optimal action distribution of the deceptive agent as the number of
samples goes to infinity.

> Publication:

A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control
via Path Integral Approach," 2023 IEEE Conference on Decision and Control (CDC)
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towards a goal position

» Task 3: Maintain specific distances
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Conventional Task Hierarchical Control
» Task 1: Avoid collisions with obstacles

P > Task 2: Steer the platoon’s centroid

Goal towards a goal position
’» > Task 3: Maintain specific distances

between the agents

Disturbance

N4
Agent 2

Projection Projection
x(6)
uz(t) High- Middle- | Low-
oref(t K h | POMY | priority priority
= [ ' |task task task
213
of®) ' e b
a3(t)
o) . 5 o

» Simple controllers (such as PID) are used for K; to achieve reference
tracking in task coordinate o;(t)

> Reference signals /*'(t) are often chosen manually.
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Task Hierarchical Control via Path Integral Method

Disturbance
|

{ Projection Projection
| =0 uz(t) High-  Middle- | Low- |
0] priority  priority priority |
! task task task H
: as(t)
O] % | "
Path-

H Integral H

| ; Controller Lot
w® } Monte-Carlo estimate of i ®

uy(t) = —R6T0,](x(1))

> Path integral controller seeks the optimal input for some of the tasks,
while rudimentary controllers can be kept for other tasks.

» Manuscript:
A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space

Projection and Path Integral Approach," American Control Conference (ACC) 2025
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