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What is Path Integral Control?
▶ Path integral control is used to solve stochastic optimal control

problems. It computes optimal control input online (in real-time) via
Monte-Carlo simulations.

▶ The optimal control input is computed via the empirical mean of the
path cost ("path integral") of simulated sample paths.
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What is Path Integral Control?

▶ The objective is to solve a Stochastic Optimal Control (SOC) problem

min
u

C(x0, t0, u(·))

s.t. dx(t) = f (x(t), t)dt + G(x(t), t)u(x(t), t)dt +Σ(x(t), t)dw(t).

▶ The stochastic dynamics is a control-affine n-dimensional Ito process
t ∈ [t0,T ] and w(t) is an n-dimensional Brownian motion.

▶ The cost function is quadratic in u. C(x0, t0, u(·)) =

Ex0,t0


∫ T

t0

(
V (x(t), t) +

1
2
u⊤R(x(t), t)u

)
dt︸ ︷︷ ︸

Running cost
(e.g., travel distance)

+ ψ(x(T ))︸ ︷︷ ︸
Terminal cost

(e.g., distance from home)


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What is Path Integral Control?
▶ Using dynamic programming the optimal control can be computed as:

u∗(x , t) = −R−1(x , t)G⊤(x , t)∂xJ(x , t).

where J(x , t) is the value function of the SOC problem which satisfies
the Hamilton-Jacobi-Bellman (HJB) PDE

−∂tJ=−
1
2
(∂xJ)

⊤GR−1G⊤∂xJ + V + f⊤∂xJ +
1
2
Tr(ΣΣ⊤∂2

x J), ∀x , t

with boundary condition J(x ,T ) = ψ(x).

▶ HJB PDE is non-linear in J and can be high-dimensional⇒ difficult to
solve analytically

▶ Path integral approach makes the HJB PDE linear by making the
following assumption:
Suppose ∃ λ > 0 satisfying:

Σ(x , t)Σ⊤(x , t)︸ ︷︷ ︸
noise covariance

= λG(x , t)R−1(x , t)︸ ︷︷ ︸
inverse of control cost

G⊤(x , t).
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What is Path Integral Control?
▶ The linearized HJB PDE can be solved by using the Feynman-Kac lemma:

J(x , t) =−λ log Ex,t

exp(− 1
λ

∫ T

t

V (x(t), t)dt − 1
λ
ψ(x(T ))

)
︸ ︷︷ ︸

Path cost

 .
where E[·] is with respect to the distribution P(x) generated by the
"uncontrolled" dynamics dx = fdt +Σdw

▶ Monte Carlo simulations

J(x , t) ≈ −λ log 1
N

N∑
i=1

exp

− 1
λ

∫ T

t

V
(
x (i)(t), t

)
dt −

ψ
(
x (i)(T )

)
λ


︸ ︷︷ ︸

Path cost
▶ Optimal control u∗(x , t) of the SOC problem can also be computed by

Monte Carlo simulations.
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Brief History of Path Integral Control

▶ Path integral control is inspired by the Path Integral formulation of
quantum mechanics which considers every possible trajectory of a
particle and computes their probabilities.

▶ [Yasue 1981, Guerra et al. 1983] identified the class of SOC problems in
which the associated HJB equation coincides with the linear Schrödinger
equation.

▶ [Itami 2001, Itami 2003] invoked the Feynman-Kac formula to
numerically evaluate the solution of Schrödinger equation using Monte
Carlo (Metropolis-Hastings) algorithm.

▶ [Kappen 2005] showed that a certain class of stochastic optimal control
problems for which stochastic HJB equation can be linearized, can be
solved by the path integral method.

▶ Model Predictive Path Integral (MPPI) control: a receding horizon
implementation of path integral control [Williams et al. 2016, Williams et
al. 2017]
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Why Path Integral Control?

Simulator-driven: no analytical model required

“Digital Twinning”
“Path integral 

control”

Image: Matlab Vehicle Dynamics BlocksetReal-time Simulation

Equation-based modeling

= ( , )

Physical system
Control Policy Synthesis

= ( )
Control

Actions
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Why Path Integral Control?

One shot, online

Convergence 

� !" ≈ � ?

Policy update

Policy evaluation

Evaluate value function 

$%& using Monte-Carlo 

samples generated by a 

behavioral policy �'

�
∗
= � 

Optimal policy �∗

$%&

� !"

Yes

No

)
≔

)
+
1

Off-Policy Monte-Carlo Control

Policy evaluation

Evaluate value 

function ��∗ using 

Monte-Carlo samples 

generated by a 

behavioral policy !"

(This does not require 

the knowledge of the 

optimal policy !∗)

Policy computation

Optimal policy !∗

#�∗

!
∗

Path Integral Control

(a) RL technique (b) Monte-Carlo RL and path integral control
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Why Path Integral Control?
▶ For a certain class of stochastic optimal control problems the required

number of samples for path integral control depends only
logarithmically on the dimension of the control input1.

▶ Less susceptible to the curse of dimensionality

Figure: Grid-based approaches

Figure: Path-integral approach

1 A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Com-
plexity Analysis," IEEE Control Systems Letters (L-CSS)



10/51

Why Path Integral Control?
▶ For a certain class of stochastic optimal control problems the required

number of samples for path integral control depends only
logarithmically on the dimension of the control input1.

▶ Less susceptible to the curse of dimensionality

Figure: Grid-based approaches

Figure: Path-integral approach

1 A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Com-
plexity Analysis," IEEE Control Systems Letters (L-CSS)



11/51

Why Path Integral Control?

Monte Carlo simulations can be parallelized on GPUs which
makes it effective for real-time control applications.
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Why Path Integral Control?
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Outline of the Ph.D. Work
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Chance-Constrained Control
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Background

Chance-constrained stochastic
optimal control problem

The drunken spider problem1

▶ A drunken spider wants to take the
shortest path to home.

▶ Probability of falling into the water
should be small→ chance constraint Image credit [1]

1 Kappen "Path integrals and symmetry breaking for optimal control theory", Journal of statistical mechanics: theory
and experiment, 2005, no. 11
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Safe Region and Exit Time

Exit Time (Final Time)

tf =

{
T if x(t) ∈ Xs , ∀t ∈ (t0,T )

inf {t ∈ (t0,T ) : x(t) /∈ Xs} otherwise
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Chance-constrained Stochastic Optimal Control

min
u

Ex0,t0

[∫ tf

t0

(
V (x(t), t)+

1
2
u⊤R(x(t), t)u

)
dt + ψ(x(tf )) · 1x(tf )∈Xs

]
s.t. dx = fdt + Gudt +Σdw , x(t0) = x0,

Px0,t0

 ∨
t∈(t0,T ]

x(t) /∈ Xs


︸ ︷︷ ︸

Probability of failure (Pfail)

< ∆ (Chance constraint)

▶ This is a variable end-time problem - there is no cost after system fails.
▶ We consider end-to-end risk (not pointwise risk).
▶ The acceptance of the possibility of failure is effective in reducing the

conservatism of the controller even if the introduced probability of failure
is practically negligible.
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Related Work
▶ Iterative risk allocation scheme with Boole’s bound [Ono et al. 2008]:

Boole’s bound is used to approximate the joint chance constraint and the
user-specified risk "budget" is allocated optimally between timesteps.

▶ Lagrangian relaxation with Boole’s bound [Ono et al. 2015]: Joint chance
constraint is approximated using Boole’s inequality, and Lagrangian
relaxation is used to obtain an unconstrained optimal control problem
which is solved using dynamic programming.

▶ Stochastic Control Barrier Functions [Santoyo et al. 2019]: Stochastic
control barrier functions are used to derive sufficient conditions on the
control input that bound the probability of failure.

▶ Reflection principle [Ariu et al. 2017]: Reflection principle of Brownian
motion along with Boole’s inequality is used to bound the failure
probability in continuous-time.

▶ Generalized polynomial chaos [Nakka et al. 2019]: A stochastic optimal
control problem is converted to a deterministic optimal control problem
using generalized polynomial chaos expansion and then solved using
sequential convex programming.

▶ Sampling-based approaches [Blackmore et al. 2010]
▶ Reinforcement learning [Huang et al. 2021]
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Our Contributions

▶ We solve the chance-constrained stochastic optimal
control problem without introducing any conservative
approximation of the chance constraint.

▶ We introduce a dual SOC problem and prove that the
strong duality exists between the original
chance-constrained SOC problem and the dual SOC
problem.

▶ We propose a novel path-integral-based dual ascent
algorithm to numerically solve the dual problem.

We provide an optimal solution the chance-constrained
stochastic optimal control problem which can be computed
online via Monte-Carlo samples of system trajectories (path
integral control).
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Lagrangian
▶ Lagrangian:

L (x0, t0, u(·); η) = C (x0, t0, u(·)) + η

Px0,t0

 ∨
t∈(t0,T ]

x(t) /∈ Xs

− ∆︸︷︷︸


where η ≥ 0 is the Lagrange multiplier.

▶ We prove that

Pfail = Px0,t0

 ∨
t∈(t0,T ]

x(t) /∈ Xs


= Ex0,t0

[
1x(tf )∈∂Xs︸ ︷︷ ︸

]

C(x0, t0, u(·)) = Ex0,t0

[∫ tf

t0

(
V+

1
2
u⊤Ru

)
dt + ψ(x(tf )) · 1x(tf )∈Xs︸ ︷︷ ︸

]
▶ Defining ϕ (x ; η) := ψ (x) · 1x∈Xs︸ ︷︷ ︸+ η · 1x∈∂Xs︸ ︷︷ ︸− η ∆︸︷︷︸,

L(x0,t0,u(·); η) = Ex0,t0

[
ϕ(x(tf ); η)+

∫ tf

t0

(
1
2
u⊤Ru + V

)
dt

]
.
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Dual SOC Problem
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How to compute Dual Function?
Theorem (Verification Theorem)2: Suppose for a given η ≥ 0, there exists a
function J : Q → R such that J(x , t; η) solves the HJB PDE:

−∂tJ=−
1
2
(∂xJ)

⊤GR−1G⊤∂xJ+V+f⊤∂xJ+
1
2
Tr(ΣΣ⊤∂2

x J), ∀(x , t)∈Q

lim
(x,t)→(y,t)

J(x , t; η) = ϕ(y ; η), ∀(y , t) ∈ ∂Q (Dirichlet BC)

Then,
1. J(x , t; η) is the value function, i.e.,

J(x , t; η) = min
u(·)
L(x , t, u(·); η)

2. The optimal control is given by

u∗(x , t; η) = −R−1(x , t)G⊤(x , t)∂xJ(x , t; η).

2 A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path Integral
and Finite Difference Methods," 2022 IEEE Conference on Decision and Control (CDC)
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Does the Strong Duality Exist?
▶ The value of the dual problem is always a lower bound for

the primal problem

▶ Strong duality: duality gap is zero
▶ Theorem (Strong Duality)3: Under certain assumptions on

strict feasibility and continuity4, we prove that
(i) There exists a dual optimal solution 0 ≤ η∗ <∞ that

maximizes the dual function g(η) and
(ii) A unique optimal policy u∗(· ; η∗) of the problem

argminu(·) L (x0, t0, u(·); η∗) is an optimal policy of the
primal problem i.e., C (x0, t0, u

∗(· ; η∗)) = g(η∗).
Strong duality exists!!

Solution of the chance-constrained SOC (primal)= Solution of the dual SOC
How to solve the dual SOC problem?

3 A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time Chance-
Constrained Stochastic Optimal Control," submitted to Transactions on Automatic Control

4 We require to have continuity of Pfail with respect to η. We conjecture that this assumption is valid under mild
conditions; a formal analysis is postponed as future work.
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How to Solve the Dual Problem?

▶ Gradient ascent

η ← η + γ(Pfail(x0, t0, u
∗(·; η))−∆︸ ︷︷ ︸

gradient

)

▶ How to compute Pfail(x0, t0, u
∗(·; η))?

– Compute u∗(·; η)
– Sample N trajectories {x (i)}Ni=1 under u∗
– Use Monte Carlo

Pfail(x0, t0, u
∗(·)) ≈ 1

N

N∑
i=1

1x (i)(tf )∈∂Xs

▶ Can we find Pfail(x0, t0, u
∗(·)) without constructing u∗?
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Computation of Pfail((x0, t0, u
∗(·))

▶ Theorem5: Suppose we sample N trajectories of the
"uncontrolled" dynamics dx = fdt +Σdw and let r (i) be the
path cost of the sample path i

r (i) = exp
(
−
ϕ
(
x (i)(tf ); η

)
λ

− 1
λ

∫ tf

t0

V
(
x (i)(s), s

)
ds

)
.

Then as N →∞,
N∑
i=1

r (i)∑N
i=1 r

(i)
1x(i)(tf )∈∂Xs

a.s.→ Pfail(x0, t0, u
∗(·))

▶ We do not need u∗. Simply simulate the "uncontrolled"
dynamics dx = fdt +Σdw and use Monte Carlo!

5 A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time Chance-
Constrained Stochastic Optimal Control," submitted to Transactions on Automatic Control
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To Sum Up...Our Approach to solve the
Chance-Constrained SOC Problem

▶ Step 1: Find Pfail(x0, t0, u
∗(·)) via MC simulations of uncontrolled

dynamics⇒ doesn’t require u∗.

▶ Step 2: Use gradient ascent η ← η + γ(Pfail(x0, t0, u
∗(·; η))−∆), and find

the "magic" η∗ that solves the problem maxη≥0 g(η)

According to the strong duality theorem, a unique optimal policy u∗(· ; η∗) of
the problem argminu(·) L (x0, t0, u(·); η∗) is an optimal policy of the
chance-constrained SOC problem.
▶ Step 3: Solve argminu(·) L (x0, t0, u(·); η∗) .

How? Use the verification
theorem6⇒ solve the HJB PDE

We use two numerical methods to solve the HJB PDE:
▶ Finite Difference Method (a grid-based approach)
▶ Path Integral Method

6 A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path Integral
and Finite Difference Methods," 2022 IEEE Conference on Decision and Control (CDC)
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Finite Difference Method
Computational domain is discretized into a finite grid points
and the solution to the PDE is sought at these locations.
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Finite Difference Method: Limitations

▶ Curse of dimensionality – Gridding is prohibitive for
problems with higher dimensions.

▶ HJB equation for our SOC must be solved
backward-in-time, which is inconvenient for real-time
implementations.

▶ FDM computes the global solution of J(x , t; η) and
u∗(x , t; η) over the entire domain Q even if the majority of
the state-time pairs (x , t) will never be visited by the actual
system.

We want an algorithm to compute u∗ on-the-fly for the given η∗
and the current state-time pair (x , t).
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Path Integral Method

▶ Computes the solution J(x , t; η) of the HJB PDE at an
arbitrary (x , t) using forward-in-time Monte-Carlo
simulations of system trajectories.

▶ Optimal control u∗(x , t; η) can also be computed by
Monte-Carlo simulation without solving HJB equation
backward in time.

▶ Massively parallelizable on GPUs.
▶ Path integral method is considered less susceptible to

curse of dimensionality

For a certain class of stochastic optimal control problems the
required number of samples depends only logarithmically on
the dimension of the control input.
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Path-Integral-Based Dual Ascent Algorithm
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Path Integral Method: Limitations

▶ Only applicable to certain classes of problems that satisfy the following
assumption:
∃ λ > 0 satisfying:

Σ(x , t)Σ⊤(x , t)︸ ︷︷ ︸
noise covariance

= λG(x , t)R−1(x , t)︸ ︷︷ ︸
inverse of control cost

G⊤(x , t).

Removal of this assumption is discussed in some of the literature. 7 8

▶ Computationally heavy
▶ The outcome of path integral control is probabilistic; hence applying

path integral controller to safety-critical systems would require rigorous
performance guarantees. However, the sample complexity of the path
integral control is not well-studied in the literature.

7 S. Satoh et al., "An iterative method for nonlinear stochastic optimal control based on path integrals,” IEEE Trans-
actions on Automatic Control, 2016.

8 G. Williams et al., "Information theoretic MPC for model-based reinforcement learning," IEEE ICRA, 2017.
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Example: Single Integrator

dpx = −kxpxdt + uxdt + σdwx

dpy = −kypydt + uydt + σdwy
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Example: Single Integrator

J(x , t0; η) = min
u(·)

Ex ,t0

[
ϕ (x(tf ); η)+

∫ tf

t0

(
1
2
u⊤Ru +V

)
dt

]
.
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Example: Single Integrator
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Example: Unicycle Model


dpx
dpy
ds
dθ

=− k


px
py
s
θ

 dt +


s cos θ
s sin θ

0
0

dt +


0 0
0 0
1 0
0 1

([aω
]
dt+

[
σ 0
0 ν

]
dw

)
.
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Example: Car Model

dpx
dpy
ds
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s cos θ
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s tanϕ
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a
ζ
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Summary
▶ We solved the chance-constrained stochastic optimal control problem

without introducing any conservative approximation of the chance
constraint.

▶ We introduced a dual SOC problem and proved that the strong duality
exists between the original chance-constrained SOC problem and the
dual SOC problem.

▶ We derived a novel path-integral-based dual ascent algorithm to
numerically solve the dual problem.

We provided an optimal solution the chance-constrained stochastic optimal
control problem which can be computed online via Monte-Carlo samples of
system trajectories (path integral control).

▶ Publications
– A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained

Stochastic Optimal Control via Path Integral and Finite Difference
Methods," 2022 IEEE Conference on Decision and Control (CDC)

– A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent
Approach to Continuous-Time Chance-Constrained Stochastic Optimal
Control," submitted to Transactions on Automatic Control
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Two-Player Zero-Sum Game
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Zero-Sum Game Stochastic Differential Game (SDG)
▶ Control using an uncertain actuator:

dx(t) = f (x(t), t)dt + G(x(t), t)
(
u(x(t), t)dt + v(x(t), t)dt + dw(t)︸ ︷︷ ︸

Uncertain control input

)
▶ v(x(t), t): Non-stochastic uncertainty: unmodeled

bias, fatigue. It is reasonable to assume v is bounded,
but the control designer should assume the most
pessimistic scenario.

▶ w(t): Stochastic uncertainty
▶ Control designer wants to minimize

Ex0,t0

[
ϕ (x(tf )) +

∫ tf
t0

( 1
2u

⊤Ruu + V
)
dt
]
under the presence of v and w.

▶ Zero-sum SDG

min
u

max
v

Ex0,t0

[
ϕ (x(tf ))+

∫ tf

t0

(
1
2
u⊤Ruu−

1
2
v⊤Rvv+V

)
dt

]
s.t. dx =fdt + Guudt + Gvvdt +Σdw .
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Zero-Sum Game Stochastic Differential Game (SDG)

▶ Our Contributions:
– We covert the problem of two-player zero-sum SDG as a problem
of solving a Hamilton-Jacobi-Isaacs (HJI) PDE with Dirichlet
boundary condition.

– We develop a path-integral framework to solve the HJI PDE and
establish the existence and uniqueness of the saddle point
solution (optimal solution of the game).

– We obtain explicit expressions for the saddle-point policies which
can be numerically evaluated using Monte Carlo simulations.

– Our approach allows the game to be solved online without the
need for any offline training or precomputations.

– Publication
▶ A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing

Two-Player Zero-Sum Stochastic Differential Game via Path
Integral Control," 2023 IEEE Conference on Decision and Control
(CDC)
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Stealthy Attack Detection (Ongoing Work)
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Stealthy Attack Detection (Ongoing Work)
dvt = dwt (No Attack)

probability distribution Q

dvt = θtdt + dwt (Under Attack)
probability distribution P

▶ Adversary’s problem: KL control problem

max
θ

EP

∫ T

0
ℓ(xt , ut)dt − λD(P∥Q)︸ ︷︷ ︸

KL Divergence

.

▶ Controller’s Problem: Minimax KL control problem:

min
u

max
θ

EP

∫ T

0
ℓ(xt , ut)dt − λD(P∥Q)︸ ︷︷ ︸

KL Divergence

.
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Publications
Journal Publications

▶ A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample
Complexity Analysis," IEEE Control Systems Letters (L-CSS)

▶ A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time
Chance-Constrained Stochastic Optimal Control," submitted to Transactions on Automatic Control

▶ M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in
Obstructed Environments," under preparation

Conference Publications
▶ A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample

Complexity Analysis," 2024 IEEE Conference on Decision and Control (CDC)
▶ A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control via Path Integral

Approach," 2023 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential

Game via Path Integral Control," 2023 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, T. Tanaka, “Upper and Lower Bounds for End-to-End Risks in Stochastic Robot Navigation," 2023 IFAC

World Congress
▶ A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path

Integral and Finite Difference Methods," 2022 IEEE Conference on Decision and Control (CDC)
▶ A. Patil, T. Tanaka, “Upper Bounds for Continuous-Time End-to-End Risks in Stochastic Robot Navigation,"

2022 European Control Conference (ECC)
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7. Introduction to Optimization A
8. Statistical Estimation Theory CR
9. Reinforcement Learning A
10. Application Programming for Engineers A-
11. Stochastic Processes I A
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Timeline

Chapter 6: Detection and Risk Mitigation of Stealthy Attack:
Continuous-Time KL Control Problem

▶ Task 6.1: Worst-Case Attack Synthesis
▶ Task 6.2: Attack Mitigation
▶ Task 6.3: Experimental Results

Dissertation Dec’24 Jan’25 Feb’25 Mar’25 Apr’25 May’25
Chapter 1 Writing
Chapter 2 Writing
Chapter 3 Writing
Chapter 4 Writing
Chapter 5 Writing
Chapter 6 Task 6.1 Task 6.2 Task 6.3 Task 6.3 Writing
Chapter 7 Writing

Table: 6-Month Timeline of Dissertation Completion
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Optimal Deception by Path Integral Control

▶ Problem Setup
– A supervisor wants an agent to reach the target as soon as
possible (reference policy)

– The agent, on the other hand, wishes to avoid the regions covered
under fire (deviated policy)

– How can the agent satisfy their own interest by deviating from the
reference policy without being detected by the supervisor?
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Our Contributions
▶ We formalize the synthesis of an optimal deceptive policy as a KL

control problem. We introduce KL divergence as a stealthiness measure
using motivations from hypothesis testing theory.

min
Q

EQ

T∑
t=0

Ct(Xt ,Ut) + λD(Q||R)

where R is the reference policy and Q is the deviated policy.

▶ We solve the KL control problem using backward dynamic
programming. Since dynamic programming suffers from the curse of
dimensionality, we develop an algorithm based on path integral control
to numerically compute the optimal deceptive actions online using
Monte Carlo simulations without explicitly synthesizing the policy.

▶ We show that our proposed algorithm asymptotically converges to the
optimal action distribution of the deceptive agent as the number of
samples goes to infinity.

▶ Publication:
A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control
via Path Integral Approach," 2023 IEEE Conference on Decision and Control (CDC)
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Sample Complexity of Path Integral Approach
▶ Stochastic LQR

min
{kt (·)}T−1

t=0

E
T−1∑
t=0

(
1
2
x⊤t Mtxt+

1
2
u⊤tNtut

)
+E

(
1
2
x⊤TMT xT

)
s.t. xt+1=Atxt+Btut+wt , x0 = x0.

▶ Optimal policy by solving backward Riccati Recursion

ut = kt(xt) = Ktxt , Kt = −(B⊤
t Θt+1Bt + Nt)

−1B⊤
t Θt+1At

▶ We derived a path integral controller to solve stochastic LQR:
– At every time-step t , sample nt trajectories {xt:T (i), ut:T−1(i)}nti=1
from the "uncontrolled" dynamics: xt+1 = Atxt + wt

– Compute path cost of each sample path i :

r(i)=exp

(
− 1
λ

∑T

k=t

1
2
xk(i)

⊤Mkxk(i)

)
– Path integral LQR controller:

ût =

nt∑
i=1

r(i)∑nt
i=1 r(i)

ut(i).

– Does not require solving backward Riccati equation
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Sample Complexity of Path Integral Approach
▶ Define the empirical means Ê and true expectations E as

Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
, E ru

t = lim
nt→∞

∑nt
i=1 r(i)ut(i)

nt
, Ê r

t =

∑nt
i=1 r(i)

nt
, E r

t = lim
nt→∞

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of positive

numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt . Suppose α+ β < 1.
If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê r

t+∥Ê ru
t ∥∞

)√
1
2 log 2

αt

)2
ϵ2t (Ê

r
t )

4

and Ê r
t >

√
1

2nt
log 2

αt
, then ∥û − u∥2

∞ :=
∑T−1

t=0 ∥ût − ut∥2
∞ ≤ ϵ with

probability greater than or equal to 1 − α− β.
▶ The required number of samples depends only logarithmically on the dimension

of the control inputm.
▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR

via Path Integral Control and Its Sample Complexity Analysis," IEEE Control
Systems Letters (L-CSS)
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, Ê r

t =

∑nt
i=1 r(i)

nt
, E r

t = lim
nt→∞

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of positive

numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt . Suppose α+ β < 1.

If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê r
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Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
, E ru

t = lim
nt→∞

∑nt
i=1 r(i)ut(i)

nt
, Ê r
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t+∥Ê ru
t ∥∞

)√
1
2 log 2

αt

)2
ϵ2t (Ê
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∞ :=
∑T−1

t=0 ∥ût − ut∥2
∞ ≤ ϵ with

probability greater than or equal to 1 − α− β.

▶ The required number of samples depends only logarithmically on the dimension
of the control inputm.

▶ Publication: A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR
via Path Integral Control and Its Sample Complexity Analysis," IEEE Control
Systems Letters (L-CSS)



50/51

Sample Complexity of Path Integral Approach
▶ Define the empirical means Ê and true expectations E as
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, Ê r

t =

∑nt
i=1 r(i)

nt
, E r

t = lim
nt→∞

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of positive

numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt . Suppose α+ β < 1.
If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê r
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Conventional Task Hierarchical Control
▶ Task 1: Avoid collisions with obstacles
▶ Task 2: Steer the platoon’s centroid

towards a goal position
▶ Task 3: Maintain specific distances

between the agents

▶ Simple controllers (such as PID) are used for Ki to achieve reference
tracking in task coordinate σi (t)

▶ Reference signals σrefi (t) are often chosen manually.
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Task Hierarchical Control via Path Integral Method

▶ Path integral controller seeks the optimal input for some of the tasks,
while rudimentary controllers can be kept for other tasks.

▶ Manuscript:
A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space
Projection and Path Integral Approach," submitted to 2024 American Control
Conference (ACC)
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Questions?
� apurvapatil@utexas.edu

 Google Scholar |�Website |� LinkedIn |� Github

mailto:apurvapatil@utexas.edu
https://scholar.google.com/citations?user=rPFSEgsAAAAJ&hl=en&oi=ao
https://patil-apurva.github.io/portfolio/
https://www.linkedin.com/in/apurva-d-patil/
https://github.com/patil-apurva
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