
Advancing Frontiers of Path Integral
Theory for Stochastic Optimal Control

by

Apurva Patil

Ph.D. Proposal

Submitted to the Department of Mechanical Engineering

The University of Texas at Austin

In Partial Fulfillment of the Requirements

For Ph.D. Candidacy in Mechanical Engineering

November 2024

The University of Texas at Austin

Abstract

Stochastic Optimal Control (SOC) problems arise in systems where the dynamics are influenced by random distur-
bances and uncertainties, such as robotic systems navigating unpredictable environments or financial systems subject
to asset price fluctuations. These problems are modeled using stochastic differential equations (SDEs), where the goal
is to design control inputs that minimize a cost function while accounting for the probabilistic nature of the system’s
evolution. Traditional methods like dynamic programming, though powerful, are computationally expensive, particu-
larly for high-dimensional and non-linear systems due to the curse of dimensionality. The path integral control approach
offers a promising alternative for solving SOC problems, especially in complex, high-dimensional systems. Based on
the Feynman-Kac theorem, the path integral method transforms the SOC problem into an expectation over noisy sys-
tem trajectories, enabling efficient policy computation through Monte Carlo sampling. As the number of Monte Carlo
samples approaches infinity, the policy generated by the path integral method converges to an optimal policy. Due to
its purely simulator-driven nature, path integral control is applicable to high-dimensional, nonlinear, and SOC problems,
where conventional model-based policy synthesis methods often face challenges. The ability to parallelize the Monte
Carlo simulations on Graphics Processing Units (GPUs) makes the path integral approach scalable and well-suited for
real-time applications. Additionally, it operates directly on the system’s non-linear dynamics, allowing it to handle a wide
range of practical systems where traditional linear approximations fall short. The path integral approach is inherently
robust to uncertainties, making it particularly relevant for safety-critical applications such as autonomous vehicle naviga-
tion, where accounting for sensor noise and unpredictable conditions is essential for safe operation. Its real-time policy
generation capability makes it adaptable to dynamic environments, further enhancing its utility in autonomous systems
and robotics. This dissertation develops and applies the path integral control theory to six classes of SOC problems:
Chance-Constrained SOC, Two-Player Zero-Sum Stochastic Differential Games, Deceptive Control, Task Hierarchical
Control, Risk Mitigation of Stealthy Attack and Discrete-Time Stochastic Linear Quadratic Regulator (LQR). Addition-
ally, it presents a sample complexity analysis of the path integral controller for discrete-time stochastic LQR problems.
Through these contributions, this research work lays foundational groundwork for simulator-driven autonomy in solving
complex SOC problems, particularly those involving non-linear dynamics and high-dimensional state spaces.

1

Contents
1 Introduction 4

1.1 History of Path Integral Control . 5
1.2 Organization of the Proposal . 5

2 Chance-Constrained Stochastic Optimal Control 6
2.1 Motivation . 6
2.2 Literature Review . 6
2.3 Contributions . 7
2.4 Preliminaries . 7

2.4.1 Controlled and Uncontrolled Processes . 7
2.4.2 Probability of Failure . 7
2.4.3 Exit Times . 8

2.5 Problem Formulation . 8
2.5.1 Chance-Constrained SOC Problem . 8
2.5.2 Dual SOC Problem . 9

2.6 Synthesis of Optimal Control Policies . 10
2.6.1 Computation of the Dual Function . 10
2.6.2 Strong Duality . 12
2.6.3 Risk Estimation . 13
2.6.4 Generalized Risk-Estimation PDE . 15
2.6.5 Solution of the Dual Problem (14) . 16

2.7 Simulation Results . 17
2.7.1 Input Velocity Model . 18
2.7.2 Unicycle Model . 19
2.7.3 Car Model . 21

2.8 Publications . 22
2.9 Future Work . 22

3 Two-Player Zero-Sum Stochastic Differential Game 23
3.1 Motivation and Literature Review . 23
3.2 Contributions . 24
3.3 Problem Formulation . 24
3.4 Synthesis of Optimal Control Policies . 25

3.4.1 Backward Dynamic Programming . 25
3.4.2 Path Integral Solution . 27

3.5 Simulation Results . 28
3.5.1 Disturbance Attenuation Problem . 29
3.5.2 Pursuit-Evasion Game . 31

3.6 Publications . 32
3.7 Future Work . 32

4 Task Hierarchical Control 33
4.1 Motivation and Literature Review . 33
4.2 Contributions . 34
4.3 Preliminaries . 34
4.4 Null-Space Projection . 35

4.4.1 Integration of Null Space Projection and Path Integral Control 36
4.5 Simulation Results . 38

4.5.1 Single Agent Example . 38
4.5.2 Two Agents Example . 40

4.6 Publications . 43
4.7 Future Work . 43

2

5 Deceptive Control 43
5.1 Motivation . 43
5.2 Literature Review . 44
5.3 Contributions . 45
5.4 Problem Formulation . 45
5.5 Synthesis of Optimal Control Policies . 47

5.5.1 Backward Dynamic Programming . 48
5.5.2 Path Integral Solution . 49

5.6 Simulation Results . 52
5.7 Publications . 53
5.8 Future Work . 53

6 Detection and Risk Mitigation of Stealthy Attack 54
6.1 Worst-Case Attack Synthesis . 54
6.2 Attack risk mitigation . 55
6.3 Experimental Results . 55

7 Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Complexity Analysis 55
7.1 Motivation and Literature Review . 55
7.2 Contributions . 56
7.3 KL Control via Path Integral . 56
7.4 Stochastic LQR via Path Integral . 57

7.4.1 Classical solution . 58
7.4.2 Path-integral-based solution . 58

7.5 Sample Complexity Analysis . 59
7.5.1 Sample Complexity Bound . 60
7.5.2 Upper Bound on the Control Performance . 61

7.6 Simulation Results . 62
7.7 Publications . 63
7.8 Future Work . 63

8 Proposed Dissertation Chapters and Timeline 63

9 Publications 64
9.1 Journal Publications . 64
9.2 Conference Publications . 64

10 Summary 65

11 Appendix 65
11.1 Nonconvex Optimization and Strong Duality . 65
11.2 Legendre Duality . 68
11.3 The Likelihood Ratio dQ∗

dP (x) . 68

3

1 Introduction
Making the best possible decisions within the available time and computational resource constraints is a necessary skill for
truly autonomous systems. In many engineering scenarios, optimal decision-making requires solving Stochastic Optimal
Control (SOC) problems. SOC refers to a class of control problems that involves making optimal decisions for systems
whose dynamics are influenced by random disturbances or uncertainties. These uncertainties can arise from various
factors such as environmental noise, model inaccuracies, or unobserved phenomena. Examples include robotic systems
navigating uncertain environments, financial systems where asset prices evolve stochastically, and energy systems subject
to demand fluctuations. Unlike deterministic control problems, where the system’s behavior can be predicted exactly, SOC
problems account for the randomness in the system. The general SOC problem involves a dynamical system described by
stochastic differential equations (SDEs). These equations model the evolution of the system’s state over time, driven by
both control inputs and stochastic processes, typically represented as Wiener or Brownian motion [1]. The challenge lies in
designing control inputs that minimize a given cost function, such as energy consumption or deviation from a target state,
while considering the probabilistic evolution of the system. This cost function is often an expectation over all possible
system trajectories, making the optimization inherently complex.

At the core of SOC is the Bellman principle of optimality, which states that the optimal policy at any given time
depends only on the current state of the system, not on the prior history of states. This leads to the formulation of the
Hamilton-Jacobi-Bellman (HJB) equation, a partial differential equation (PDE) that characterizes the value function of the
SOC problem. Solving the HJB PDE yields the optimal control policy, but for high-dimensional systems and non-linear
dynamics, solving the HJB equation analytically is often intractable. One of the commonly used approach to solve HJB
PDE is dynamic programming which breaks down the SOC problem into smaller subproblems by recursively solving
the HJB PDE. While powerful, this method suffers from the curse of dimensionality, where the computational cost grows
exponentially with the number of state variables. This makes the traditional dynamic programming approaches impractical
for real-time control.

The path integral approach, rooted in the principles of statistical physics, offers an alternative method for solving
nonlinear SOC problems online [2, 3, 4]. The fundamental insight behind path integral control lies in the Feynman-Kac
theorem [5], a result from stochastic calculus that connects PDEs with stochastic processes. This theorem allows the
transformation of the HJB equation into an expectation of an exponential cost function over noisy system trajectories
which allows for efficient computation of optimal policies through Monte Carlo sampling methods. According to the
strong law of large numbers [1], as the number of Monte Carlo samples approaches infinity, the policy generated by
the path integral method converges to an optimal policy. The path integral method can be flexibly applied to high-
dimensional control problems that involve nonlinear, stochastic, and hybrid dynamics – areas where conventional model-
based approaches often face challenges. Moreover, it relies on Monte Carlo simulations that can be massively parallelized
on Graphics Processing Units (GPUs). Millions of trajectories can be simulated simultaneously significantly reducing
computation time making the path integral approach less susceptible to the curse of dimensionality [6]. Moreover, in
certain cases, it can be formally shown that the required number of samples of Monte Carlo simulations grows only
logarithmically as a function of the dimension of the control input [7], in contrast to exact dynamic programming, whose
computational cost grows exponentially.

The path integral approach is inherently robust to uncertainties. By accounting for the stochastic nature of the system,
it ensures that control policies are not only optimized for expected outcomes but also for handling variability in system
behavior. This makes the path inetgral method highly relevant for safety-critical applications, where uncertainties can
lead to catastrophic failures if not properly managed. For instance, in autonomous vehicle navigation, the ability to
optimize trajectories under uncertain road conditions or sensor noise is crucial for ensuring safe operation. Another
significant benefit of the path integral control approach is its ability to handle non-linear systems. Many real-world
systems, such as autonomous robots or drones, have non-linear dynamics that make traditional control methods, which
rely on linear approximations, inadequate. The path integral method, however, operates directly on the system’s non-linear
dynamics, making it well-suited for controlling systems where non-linearities are inherent and crucial to their behavior.
Moreover, the path integral approach is particularly effective for online computation of control policies which is important
for applications such as autonomous driving or robotic navigation, where decisions must be made in real time. The path
integral method can generate control inputs dynamically as new information becomes available, making it adaptable to
rapidly changing environments. Finally, the path integral approach determines control inputs solely through simulators,
bypassing the need for analytical models of the plant. This is particularly beneficial in scenarios where a simulator engine
exists, but creating a mathematical (equation-based) model of the system poses challenges. As applications in robotics,
autonomous systems, and other fields continue to grow, the path integral control approach is likely to play a critical role
in advancing the state of the art in control theory and practice.

4

1.1 History of Path Integral Control
The Path Integral Control is a control algorithm inspired by the Path Integral formulation of quantum mechanics. The
origin of path integral control can be traced back to the stochastic variational treatment of quantum mechanics [8, 9, 10, 11,
12, 13]. Using Nelson’s diffusion model [8], references [12, 13] derived an SOC problem whose associated HJB equation
coincides with the linear Schrödinger equation. This connection between SOC and quantum mechanics was exploited
by Itami [14, 15], who proposed a Monte Carlo (Metropolis) algorithm to evaluate the path integral representation of
the wave function. Noticing the semi-classical limit of the Schrödinger equation approximates the HJB equation, [15]
proposed a Monte Carlo-based solution approach to deterministic nonlinear optimal control problems. This is the first
appearance of what we now know as path integral control to the best of the our knowledge. However, it should be
noted that mathematically relevant problems, such as risk-sensitive control [16, Ch. VI],[17, 18], distributionally robust
control against relative entropy ambiguity set [19], and linearly solvable Markov-Decision Processes (MDP) [20, 21] (also
known as the KL control problems) have been investigated in separate research threads.The line of work [20, 21] has been
broadly accepted by the neuroscience community, where linearly solvable MDPs are now widely used to reason about
brain’s functionality in spatial navigation (e.g., [22]).

Kappen [2] showed that a certain class of stochastic optimal control problems can be solved by the path integral method
without semi-classical approximation. For such SOC problems, it was shown that the associated stochastic HJB equation
can be linearized by the Cole-Hopf transformation (a typical change-of-variables technique to relate the HJB equation with
Burgers’ equation and the heat equation [23]). The Feynman-Kac lemma [5] is then invoked to show that the solution to the
linearized PDE admits a path integral representation, which can be numerically evaluated by Monte Carlo simulations. The
authors of [3, 24] demonstrated the path integral for policy improvements (PI2), who pioneered significant developments
of path integral control in robot learning [25, 26, 27, 28, 29, 30]. A receding horizon implementation of path integral
control, called Model Predictive Path Integral (MPPI) control [31, 6], demonstrated aggressive driving [4], where real-
time Monte Carlo simulations were parallelized on GPUs. The path integral control method has also been applied to
constrained systems and systems with non-differentiable dynamics [32, 33].

An alternative derivation of path integral control bypassing the Feynman-Kac lemma was presented in the work [34].
In [34], the authors used the variational lower bound and the Girsanov theorem to establish a connection between the
linearly solvable MDP (the KL control problems) and the problem studied by Kappen [2]. Yet another derivation of
path integral control is possible by formulating an SOC as a statistical inference problem, and then applying the standard
graphical model inference algorithms [35, 36].

It is worth noting that, in all derivations, the path integral control method faces the same limitation. It is optimal only
for the class of SOC problems whose dynamic programming equations (e.g., HJB PDEs) are linearizable. Removal of this
restriction has been studied in the literature. In [37], the authors proposed an iterative applications of the Feynman-Kac
lemma. The MPPI framework [31] utilizes a heuristic approach based on the KL-divergence minimization. However, this
limitation has not been satisfactorily removed as of today.

1.2 Organization of the Proposal
In this work, we develop path integral theory to solve six classes of stochastic optimal control problems as depicted in
Figure 1. This dissertation proposal is organized as follows: we develop the path integral control theory for six classes of

Figure 1: Dissertation Proposal Structure

stochastic optimal control problems: Chance-Constrained SOC (Chapter 2), Two-Player Zero-Sum Stochastic Differential

5

Games (Chapter 3), Deceptive Control (Chapter 5), Task Hierarchical Control (Chapter 4), Detection and Risk Mitigation
of Stealthy Attack (Chapter 6) and Stochastic LQR Problem (Chapter 7). Chapter 7 also derives the sample complexity of
the path integral controller applied to a discrete-time stochastic LQR problem. Chapter 8 details the proposed dissertation
structure and timeline. Chapter 9 provides a list of publications resulting from this work, and finally, Chapter 11 is
dedicated to the appendix.

2 Chance-Constrained Stochastic Optimal Control

2.1 Motivation
In safety-critical missions, quantitative characterization of system uncertainties is of critical importance as it impacts the
overall safety of the system operation. System uncertainties arise due to unmodeled dynamics, unknown system parame-
ters, and external disturbances. Subsequently, the control policies should be designed to accommodate such uncertainties
in order to achieve user-defined safety requirements. Robust control is a popular paradigm to guarantee safety against
set-valued uncertainties [38, 39]. Generally, a robust control approach aims to synthesize a policy that optimizes the
worst-case performance, commonly known as the minimax policy. While such a strategy is suitable for applications
where safety is an absolute requirement, the computation of the exact minimax policy is often intractable, which neces-
sitates a sequential outer-approximation of the uncertain sets. This often results in overly conservative solutions [40].
Also, robust control is difficult to apply when the uncertainty is modeled probabilistically using random variables with
unbounded support (e.g., Gaussian distributions).

Chance-constrained stochastic optimal control (SOC) is an alternative paradigm for policy synthesis under uncertainty
[41, 42]. Unlike robust control, this approach aims to optimize the system performance by accepting a user-specified
threshold for the probability of failure (e.g., collisions with obstacles). Notably, the acceptance of the possibility of failure
is often effective to reduce the conservatism of the controller even if the introduced probability of failure is practically
negligible [43]. Consequently, chance-constrained SOC is also widely used as a framework for policy synthesis for
systems in safety-critical missions.

2.2 Literature Review
In this work, we consider a continuous-time continuous-space chance-constrained SOC problem. A central challenge
in this problem stems from the fact that the continuous-time end-to-end probability of failure is generally challenging
to evaluate and optimize against. A common course of action found in the literature is to look for a tractable approxi-
mation of the chance-constrained SOC problem in order to use existing tools from optimization. In [41] a discrete-time
chance-constrained SOC problem is converted to a disjunctive convex program by approximating the chance constraint
using Boole’s inequality. The disjunctive convex program is then solved using branch-and-bound techniques. The work
presented in [44] solves the discrete-time chance-constrained problem by formulating its dual. However, in this work, the
joint chance constraint is conservatively approximated using Boole’s inequality. Hence, the duality gap is nonzero and the
obtained solution is suboptimal. In [45], authors use statistical moments of the distributions in concentration inequalities
to upper-bound the chance constraint for discrete-time trajectory planning under non-Gaussian uncertainties, and solve
the problem using nonlinear program solvers. A scenario-based optimization method that translates the chance constraints
into deterministic ones is provided in [46]. Taking ideas from distributionally robust optimization, deterministic convex
reformulation of the chance-constrained stochastic optimal control problems is proposed in [47] for discrete-time linear
system dynamics. Different from the above works in our work, we consider continuous-time, control-affine system dy-
namics. For the continuous-time chance-constrained planning problem the authors in [48] use risk contours to transform
the original problem into a deterministic planning problem and use convex methods based on sum-of-squares optimiza-
tion to obtain continuous-time trajectories. In [49] a continuous-time chance-constrained SOC problem is converted to
a deterministic control problem with convex constraints using generalized polynomial chaos expansion and Chebyshev
inequality. The deterministic optimal control problem is then solved using sequential convex programming. Other ap-
proaches that consider approximations of the chance constraints include approaches based on concentration of measure
inequalities [50], Bernstein approximation [51], and moment based surrogate [52]. A common limitation of the above ap-
proaches is the conservatism introduced by the approximation of the chance constraints, leading to overly cautious policies
that compromise performance or cause artificial infeasibilities [51, 53, 54, 55]. Deep reinforcement learning algorithms
such as soft actor-critic also have been used to solve the chance-constrained SOC problems [56].

6

2.3 Contributions
In our work, we utilize the path integral approach to numerically solve the posed chance-constrained SOC problem using
open-loop samples of system trajectories. The contributions of this work are as follows:

1. We leverage the notion of exit time from the continuous-time stochastic calculus [57, 58] to formulate a chance-
constrained SOC problem. The dual of this chance-constrained SOC problem is constructed by incorporating
the chance constraint into the cost function. The chance constraint is then transformed into an expectation of
an indicator function, which enjoys the same additive structure as the primal cost function. No approximation nor
time discretization is introduced in this transformation.

2. Given a fixed dual variable, we evaluate the dual objective function by numerically solving the Hamilton-Jacobi-
Bellman (HJB) partial differential equation (PDE).

3. It is shown that under a certain assumption on the system dynamics and cost function, a strong duality holds between
the primal problem and the dual problem (the duality gap is zero).

4. We propose a novel path-integral-based dual ascent algorithm to numerically solve the dual problem. This allows
us to solve the original chance-constrained problem online via open-loop samples of system trajectories. Finally,
we present simulation studies on chance-constrained motion planning for spatial navigation of mobile robots. The
solution obtained using the path integral approach is compared with that of the finite difference method.

Notations
Let R, Rn, and Rm×n be the set of real numbers, the set of n-dimensional real vectors, and the set of m×n real matrices.
If a stochastic process x(t) starts from x at time t, then let Px,t (E) = P

(
E(x) | x(t) = x

)
denote the probability of event

E(x) involving the stochastic process x(t) conditioned on x(t) = x, and let Ex,t [F (x)] = E [F (x) | x (t) = x] denote
the expectation of F (x) (a functional of x (t)) also conditioned on x (t) = x. Let 1E be an indicator function, which
returns 1 when the condition E holds and 0 otherwise. The

∨
symbol represents a logical OR implying existence of a

satisfying event among a collection. Tr(A) denotes the trace of a matrix A. ∂x and ∂2x are used to define, respectively, the
first and second-order partial derivatives w.r.t. x. If x is a vector then ∂x returns a column vector and ∂2x returns a matrix.
The short forms a.a. and a.s. denote almost all and almost surely, respectively.

2.4 Preliminaries
Let Xs ⊆ Rn be a bounded open set representing a safe region, ∂Xs be its boundary, and closure Xs = Xs ∪ ∂Xs.

2.4.1 Controlled and Uncontrolled Processes

Consider a controlled process x(t) ∈ Rn driven by following control-affine Itô stochastic differential equation (SDE):

dx(t) =f (x(t), t) dt+G (x(t), t)u(x(t), t)dt+Σ(x(t), t) dw(t), (1)

where u (x(t), t) ∈ Rm is a control input, w(t) ∈ Rk is a k-dimensional standard Wiener process on a suitable probability
space (Ω,F , P), f (x(t), t) ∈ Rn, G (x(t), t) ∈ Rn×m and Σ (x(t), t) ∈ Rn×k. Let x̂(t) ∈ Rn be an uncontrolled
process driven by the following SDE:

dx̂(t)=f(x̂(t),t)dt+Σ(x̂(t),t)dw(t). (2)

At the initial time t0, x(t0) = x̂(t0) = x0 ∈ Xs. Throughout this work, we assume sufficient regularity in the coeffi-
cients of (1) and (2) so that unique strong solutions exist [59, Chapter 1]. In the rest of the dissertation, for notational
compactness, the functional dependencies on x and t are dropped whenever it is unambiguous.

2.4.2 Probability of Failure

For a given finite time horizon t ∈ [t0, T], t0 < T , if the system (1) leaves the safe region Xs at any time t ∈ (t0, T], then
we say that it fails.

7

Definition 1 (Probability of failure). The probability of failure Pfail (x0, t0, u(·)) of system (1) starting at (x0, t0) and
operating under the policy u(·) is defined as

Pfail (x0, t0, u(·)) = Px0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

 . (3)

2.4.3 Exit Times

Let Q = Xs × [t0, T) be a bounded set with the boundary ∂Q = (∂Xs × [t0, T]) ∪ (Xs × {T}), and closure Q =
Q∪ ∂Q = Xs × [t0, T]. We define exit time tf for process x(t) as

tf := inf{t > t0 : (x(t), t) /∈ Q}.

Alternatively, tf can be defined as

tf :=

{
T, if x(t) ∈ Xs,∀t ∈ (t0, T),

inf {t ∈ (t0, T) : x(t) /∈ Xs}, otherwise.
(4)

For one-dimensional state space, the domains Xs,Q and their boundaries ∂Xs, ∂Q are shown in Figure 2. The figure also
depicts the exit times for two realizations of trajectories {x(t), t ∈ [t0, tf]}.

Figure 2: Computational domains and exit times tf

Similarly, exit time t̂f for process x̂(t) is defined as

t̂f := inf{t > t0 : (x̂(t), t) /∈ Q}. (5)

Note that by the above definitions, (x(tf), tf) ∈ ∂Q and
(
x̂(t̂f), t̂f

)
∈ ∂Q.

2.5 Problem Formulation
We first formalize a chance-constrained SOC problem in Section 2.5.1. In Section 2.5.2, we formulate its dual.

2.5.1 Chance-Constrained SOC Problem

Consider a cost function that is quadratic in the control input and has the form:

C (x0, t0, u(·)) := Ex0,t0

[
ψ (x(tf)) · 1x(tf)∈Xs

+

∫ tf

t0

(
1

2
u⊤R (x(t), t)u+ V (x(t), t)

)
dt

]

where ψ (x(tf)) denotes a terminal cost, V (x(t), t) a state dependent running cost, and R (x(t), t) ∈ Rm×m a given
positive definite matrix (for all values of x(t) and t). 1x(tf)∈Xs

returns 1 if the state of the system at the exit time tf is
inside the safe region and 0 otherwise i.e., the terminal cost is active only when the state of the system at the exit time

8

tf is safe. Note that our cost function is defined over time horizon [t0, tf] instead of [t0, T], because we do not consider
the cost incurred after the system fails. We wish to find an optimal control policy for system (1) such that C (x0, t0, u(·))
is minimal and the probability of failure (3) is below a specified threshold. This problem can be formulated as a chance-
constrained SOC problem as follows:

Problem 1 (Chance-constrained SOC problem).

min
u(·)

Ex0,t0

[
ψ (x(tf))·1x(tf)∈Xs

+

∫ tf

t0

(
1

2
u⊤Ru+V

)
dt

]
s.t. dx = fdt+Gudt+Σdw, x(t0) = x0,

Px0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

 ≤ ∆,

(6)

where ∆ ∈ (0, 1) represents a given risk tolerance over the horizon [t0, T], and the admissible policy u(·) is measurable
with respect to the σ-algebra generated by x(s), 0 ≤ s ≤ t.

2.5.2 Dual SOC Problem

We define the Lagrangian associated with Problem 1 as

L (x0, t0, u(·); η)+ = C (x0, t0, u(·)) + ηPx0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

− η∆ (7)

where η ≥ 0 is the Lagrange multiplier. Using a standard equality in probability theory [1], Pfail in the chance constraint
of (6) can be transformed into an expectation of an indicator function as

Px0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

 = Ex0,t0

[
1x(tf)∈∂Xs

]
. (8)

Here, 1x(tf)∈∂Xs
returns 1 if the state of the system (1) at the exit time is on the boundary of the safe set ∂Xs (i.e. the

state of the system at the exit time escapes the the safe region) and 0, otherwise. Using (8), the Lagrangian (7) can be
reformulated as

L(x0, t0, u(·); η)=C(x0, t0, u(·))+η
[
Ex0,t0

[
1x(tf)∈∂Xs

]
−∆

]
(9)

Observe that for any η ≥ 0 if we define ϕ : Xs → R as1:

ϕ (x; η) := ψ (x) · 1x∈Xs
+ η · 1x∈∂Xs

− η∆, (10)

then, the second term in (9) can be absorbed in a new terminal cost function ϕ as follows:

L(x0,t0,u(·); η) = Ex0,t0

[
ϕ(x(tf); η)+

∫ tf

t0

(
1

2
u⊤Ru+ V

)
dt

]
. (11)

Now we formulate the dual problem as follows:

Problem 2 (Dual SOC problem).

max
η

min
u(·)

L (x0, t0, u(·); η) (12)

s.t. η ≥ 0

dx = fdt+Gudt+Σdw, x(t0) = x0,

1In what follows, function ϕ(x; η) sets a boundary condition for a PDE and we often need technical assumptions on the regularity of ϕ(x; η)
(e.g., continuity on Xs) to guarantee the existence of a solution of the PDE. When such requirements are needed, we approximate (10) as ϕ(x; η) ≈
ψ(x)B(x) + η (1−B(x)), where B(x) is a smooth bump function on Xs.

9

In order to solve Problem 2 we first solve the subproblem

g(η) := min
u(·)
L (x0, t0, u(·); η) . (13)

Note that, L possesses the time-additive Bellman structure i.e., for any η ≥ 0 and t0 ≤ t ≤ tf , we can write

L (x0, t0, u(·); η) =Ex0,t0

[∫ t

t0

(
1

2
u⊤Ru+ V

)
dt

]
+ Ex,t

[
ϕ (x(tf); η) +

∫ tf

t

(
1

2
u⊤Ru+ V

)
dt

]
.

Therefore problem (13) can be solved by utilizing dynamic programming without having to introduce any conservative
approximation of the failure probability Pfail. After solving the subproblem (13) we solve the dual problem

max
η≥0

g(η). (14)

Since the dual function g(η) is the pointwise infimum of a family of affine functions of η, it is concave even when the
primal problem is not convex. Moreover, since affine functions are upper semicontinuous, g(η) is also upper semicontin-
uous.

2.6 Synthesis of Optimal Control Policies
In this section, we first express the dual function in terms of the solution to an HJB PDE parametrized by the dual variable
η. Next, we show that the strong duality holds between the primal problem (6) and the dual problem (12) (the duality gap is
zero) under a certain assumption on the system dynamics and the cost function. Finally, we propose a novel Monte-Carlo-
based dual ascent algorithm to numerically solve the dual problem (14). This implies that the optimal control input for the
original chance-constrained problem (primal problem) can be computed online by real-time Monte-Carlo simulations.

2.6.1 Computation of the Dual Function

In this section, we compute the dual function by solving problem (13) using dynamic programming. For each (x, t) ∈ Q,
η ≥ 0 and an admissible policy u(·) over [t, T), we define the cost-to-go function:

L(x, t, u(·); η)=Ex,t

[
ϕ (x(tf); η)+

∫ tf

t

(
1

2
u⊤Ru+V

)
dt

]
.

Now, we state the following theorem.

Theorem 1. Suppose for a given η ≥ 0, there exists a function J : Q → R such that

(a) J(x, t; η) is continuously differentiable in t and twice continuously differentiable in x in the domain Q;

(b) J(x, t; η) solves the following dynamic programming PDE (HJB PDE):
−∂tJ=− 1

2 (∂xJ)
⊤
GR−1G⊤∂xJ+V +f⊤∂xJ + 1

2Tr
(
ΣΣ⊤∂2xJ

)
, ∀(x, t) ∈ Q,

lim
(x,t)→(y,s)
(x,t)∈Q

J(x, t; η) = ϕ(y; η), ∀(y, s) ∈ ∂Q. (15)

Then, the following statements hold:

(i) J(x, t; η) is the value function for Problem (13). That is,

J (x, t; η) = min
u(·)
L (x, t, u(·); η) , ∀ (x, t) ∈ Q.

(ii) The solution to Problem (13) is given by

u∗(x, t; η) = −R−1 (x, t)G⊤ (x, t) ∂xJ (x, t; η) . (16)

■

10

Proof. Let J be the function satisfying (a) and (b). By Dynkin’s formula [59, Theorem 7.4.1], for each (x, t) ∈ Q and
η ≥ 0, we have

Ex,t [J (x(tf), tf ; η)]=J(x, t; η) + Ex,t

[∫ tf

t

dJ (x(s), s; η)

]
, (17)

where
dJ (x(s), s; η) =(∂tJ)ds+ (dx)⊤∂xJ +

1

2
(dx)⊤

(
∂2xJ

)
(dx)

=(∂tJ)ds+ (f+Gu)⊤(∂xJ)ds+ (Σdw)
⊤
(∂xJ) +

1

2
Tr
(
ΣΣ⊤∂2xJ

)
ds.

(18)

Notice that the term
∫ tf
t

(Σdw)
⊤
(∂xJ) is an Itô integral. Using the property of Itô integral [59, Chapter 3], we get

Ex,t

∫ tf

t

(Σdw)
⊤
(∂xJ) = 0 (19)

Substituting (18) into (17) and using (19), we have

Ex,t [J (x(tf), tf ; η)] = J(x, t; η) + Ex,t

[∫ tf

t

(
∂tJ + (f +Gu)⊤(∂xJ) +

1

2
Tr
(
ΣΣ⊤∂2xJ

))
ds

]
. (20)

By the boundary condition of the PDE (15),
J (x(tf), tf ; η) = ϕ (x(tf); η). Hence, from (20), we obtain

J(x, t; η) = Ex,t [ϕ (x(tf); η)]− Ex,t

[∫ tf

t

(
∂tJ + (f +Gu)⊤(∂xJ) +

1

2
Tr
(
ΣΣ⊤∂2xJ

))
ds

]
. (21)

Now, notice that the right hand side of the PDE in (15) can be expressed as the minimum value of a quadratic form in u
as follows:

−∂tJ = −1

2
(∂xJ)

⊤
GR−1G⊤∂xJ + V + f⊤∂xJ +

1

2
Tr
(
ΣΣ⊤∂2xJ

)
= min

u

[
1

2
u⊤Ru+ V + (f +Gu)

⊤
∂xJ +

1

2
Tr
(
ΣΣ⊤∂2xJ

)]
.

Therefore, for an arbitrary u, we have

−∂tJ≤
1

2
u⊤Ru+V +(f+Gu)

⊤
∂xJ+

1

2
Tr
(
ΣΣ⊤∂2xJ

)
(22)

where the equality holds iff
u = −R−1G⊤∂xJ. (23)

Combining (21) and (22), we obtain

J(x, t; η)≤Ex,t[ϕ(x(tf); η)]+Ex,t

[∫ tf

t

(
1

2
u⊤Ru+V

)
ds

]
= L (x, t, u(·); η) .

(24)

This proves the statement (i). Since (24) holds with equality iff (23) is satisfied, the statement (ii) also follows.

Theorem 1 implies that the solution of problem (13) can be expressed in terms of the HJB PDE (15) parameterized
by the dual variable η. Notice that (15) is a nonlinear PDE, which is in general, difficult to solve. In what follows,
we linearize the PDE (15) whose solution can be obtained by utilizing the Feyman-Kac lemma [6]. First, we make the
following assumption which is essential to linearize the PDE (15).

Assumption 1. For all (x, t) ∈ Q, there exists a positive constant λ satisfying the following equation:

Σ(x, t)Σ⊤(x, t) = λG(x, t)R−1(x, t)G⊤(x, t). (25)

11

The above assumption implies that the control input in the direction with higher noise variance is cheaper than that in
the direction with lower noise variance. See [2] for further discussion on this condition. Suppose Assumption 1 holds.
Using the constant λ that satisfies (25), we introduce the following transformed value function ξ(x, t; η):

J(x, t; η) = −λ log (ξ (x, t; η)) . (26)

Transformation (26) allows us to write the PDE (15) in terms of ξ (x, t; η) as:

∂tξ=

V ξ

λ
− 1

2
Tr
(
ΣΣ⊤∂2xξ

)
+

1

2ξ
(∂xξ)

T
ΣΣ⊤∂xξ −

λ

2ξ
(∂xξ)

⊤(
GR−1G⊤)∂xξ−f⊤∂xξ, ∀(x, t) ∈ Q,

lim
(x,t)→(y,s)
(x,t)∈Q

ξ(x, t; η)=exp
(
−ϕ(y;η)

λ

)
, ∀(y, s) ∈ ∂Q. (27)

Using Assumption 1 in the equation (27), we rewrite PDE (15) as a linear PDE in terms of ξ (x, t; η) as:
∂tξ=

V ξ
λ −f

⊤∂xξ − 1
2Tr

(
ΣΣ⊤∂2xξ

)
, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

ξ(x, t; η)=exp
(
−ϕ(y;η)

λ

)
, ∀(y, s)∈∂Q. (28)

Now we find the solution of the linearized PDE (28) using the Feynman-Kac lemma.

Lemma 1 (Feynman-Kac lemma). At any η ≥ 0, the solution to the linear PDE (28) exists. Moreover, the solution is
unique in the sense that ξ solving (28) is given by

ξ(x, t; η)=Ex,t

[
exp

(
−
ϕ
(
x̂(t̂f); η

)
λ

− 1

λ

∫ t̂f

t

V(x̂(r), r)dr

)]
. (29)

where x̂(t) evolves according to the dynamics (2) starting at (x, t) and the exit time t̂f is defined according to (5).

Proof. The proof follows from [59, Theorem 9.1.1].

Now we state the following theorem which proves that under Assumption 1, for a given value of η, the optimal policy
of problem (13) exists and is unique.

Theorem 2. If there exists a positive constant λ that satisfies Assumption 1, then for any η ≥ 0 a unique value function
J(x, t; η) of the Problem (13) exists and is given by J(x, t; η) = −λ log (ξ (x, t; η)) where ξ(x, t; η) is given by (29).
Consequently, there exists a unique optimal policy given by (16).

Proof. According to Lemma 1, the solution of the linear PDE (28) exists and is unique in the sense that ξ solving (28)
is given by (29). Therefore J(x, t; η) is unique and is given by (26). Consequently, from Theorem 1, a unique optimal
policy exists and is given by (16).

2.6.2 Strong Duality

Due to the weak duality [60], the value of the dual problem (14) is always a lower bound for the primal problem (6). The
difference between the values of (14) and (6) is called the duality gap. When the duality gap is zero, we say that the strong
duality holds. In our current study on chance-constrained SOC, strong duality has a practical significance as it implies
that an optimal solution to the “hard-constrained” problem (6) can be obtained by solving the “soft-constrained” problem
(13), provided that the dual variable η is properly chosen.

Since (6) is a non-convex optimization problem in general, establishing the strong duality between (6) and (14) is
not trivial. In Appendix 11.1, we outline general conditions under which a non-convex optimization problem admits a
zero duality gap. In the sequel, we apply the result in Appendix 11.1 to (6) to delineate the conditions under which the
chance-constrained SOC admits the strong duality.

The following assumption is reminiscent of the Slater’s condition, which is often a natural premise for strong duality:

Assumption 2. There exists a policy ũ(·) such that Pfail(x0, t0, ũ(·))−∆ < 0, i.e., Problem 1 is strictly feasible.

12

Using Lemma 3 in the Appendix 11.1, we can show that under Assumptions 1 and 2, there exists a dual optimal
solution η∗ such that 0 ≤ η∗ < ∞ such that g(η∗) = max

η≥0
g(η). To proceed further, we need the following assumption.

We conjecture that this assumption is valid under mild conditions; a formal analysis is postponed as future work.

Assumption 3. Suppose Assumption 1 holds so that for each η ≥ 0 a unique optimal policy u∗(x, t; η) of Problem (13)
exists (c.f., Theorem 2). We further assume that the function η 7→ Pfail(x0, t0, u

∗(x, t; η)) : [0,∞)→ [0, 1] is continuous.

Now notice that under Assumption 1, the solution u∗(·; η) of the problem argminu(·) L (x0, t0, u(·); η) exists and is
unique for each η ≥ 0. Therefore, statements (i) and (ii) of the Assumption 8 in the Appendix 11.1 hold true. Moreover,
by the Assumption 3, statement (iii) of Assumption 8 in the Appendix 11.1 is satisfied. Now under Assumption 8 using
Lemma 4, we can prove the following complementary slackness statements:

(a) If η∗ = 0, then Pfail(x0, t0, u
∗(· ; η∗)−∆ ≤ 0

(b) If η∗ > 0, then Pfail(x0, t0, u
∗(· ; η∗))−∆ = 0

The following theorem is the main result of this section.

Theorem 3. Consider problem 1 and suppose Assumptions 1, 2 and 3 hold. Then there exists a dual optimal solution
0 ≤ η∗ <∞ that maximizes g(η) and a unique optimal policy u∗(· ; η∗) of problem (13) is an optimal policy of Problem
1 (primal problem) such that C (x0, t0, u

∗(· ; η∗)) = g(η∗) i.e., the duality gap is zero.

Proof. Refer to the proof of Theorem 17 in the Appendix 11.1.

Similar to our approach, the work presented in [44] solves the chance-constrained problem by formulating its dual.
However, in this work, the joint chance constraint is conservatively approximated using Boole’s inequality. Hence, the
duality gap is nonzero and the obtained solution is suboptimal. Unlike this method, in our work, we prove that the strong
duality exists between the primal chance-constrained problem (6) and its dual (12) under certain assumptions on the
system dynamics and cost function. Consequently, the chance-constrained problem can be solved by evaluating the dual
objective function (c.f. Section 2.6.1) and solving the dual problem (c.f. Section 2.6.5).

In order to solve the dual problem, it is natural to use the gradient ascent algorithm η ← η + γ(Pfail(x0, t0, u
∗(·; η)))

to iteratively update the dual variable η. Here, γ is the step size, u∗(.; η) is the optimal policy solving (13), and
Pfail(x0, t0, u

∗(·; η)) is the probability of failure under the policy u∗(.; η). For the dual ascent algorithm to be practi-
cal, we need to be able to evaluate the gradient Pfail − ∆ efficiently in each iteration. Therefore, next, we study how to
compute Pfail for the given value of η.

2.6.3 Risk Estimation

We present two approaches to compute Pfail(x0, t0, u
∗(.; η)) for a given value of η. The first approach is PDE-based in

which we find the optimal policy u∗(.; η) first, and then evaluate its risk Pfail(x0, t0, u
∗(.; η)) by solving a PDE. Despite

conceptual simplicity, this approach is difficult to implement computationally unless there exists an analytical expression
of u∗(.; η). To circumvent this difficulty, we also present an importance-sampling-based approach. This approach allows
us to numerically compute Pfail(x0, t0, u

∗(.; η)) without ever constructing u∗(.; η) and is more computationally amenable.

PDE-Based Approach:

We state the following theorem:

Theorem 4. Suppose there exists a function J : Q → R such that

(a) J(x, t) is continuously differentiable in t and twice continuously differentiable in x in the domain Q;

(b) J(x, t) solves the following PDE for the given optimal control policy u∗(·):
−∂tJ=(f+Gu∗)

⊤
∂xJ+

1

2
Tr
(
ΣΣ⊤∂2xJ

)
, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

J(x, t) = ϕ′(y), ∀(y, s)∈∂Q. (30)

13

where ϕ′(x)=1x∈∂Xs
. Then, Pfail is given by

Pfail (x0, t0, u
∗(·)) = J(x0, t0).

Proof. Let J(x, t) be the function satisfying (a) and (b). By Dynkin’s formula, for each (x, t) ∈ Q we have

Ex,t [J (x(tf), tf)] = J(x, t) +Ex,t

[∫ tf

t

(
∂tJ+(f+Gu∗)⊤(∂xJ)+

1

2
Tr
(
ΣΣ⊤∂2xJ

))
ds

]
.

The second term on the right side contains, in parentheses, the PDE in (30) and is therefore zero. Hence, we obtain

J(x, t) = Ex,t [J (x(tf), tf)] . (31)

From the boundary condition of the PDE (30)

Ex,t[J(x(tf), tf)]=Ex,t [ϕ
′ (x(tf))]= Ex,t

[
1x(tf)∈∂Xs

]
. (32)

Combining (31), (32), and we obtain
J(x0, t0) = Pfail (x0, t0, u

∗(·)) .

Remark 1. We do not prove here the existence of the solution of the PDE (30), rather we suppose that a solution exists.
Note that PDE (30) is a special case of the Cauchy-Dirichlet problem. For proof of the existence of a solution to the
Cauchy-Dirichlet problem, we refer the readers to [61, Chapter 6].

Theorem 4 implies that if we have the solution for the optimal policy u∗(·), Pfail (x0, t0, u
∗(·)) can be computed by

solving the PDE (30). Next, we present an importance-sampling-based approach to find Pfail without constructing u∗(·).

Importance-Sampling-Based Approach:

Let T be the space of trajectories x := {x(t), t ∈ [t0, tf]}. Let Q∗(x) be the probability distribution of the trajecto-
ries defined by system (1) under the optimal policy u∗(·). Using (8), we can write

Pfail(x0, t0, u
∗(·)) =

∫
T
1x(tf)∈∂Xs

Q∗(dx). (33)

Suppose we generate an ensemble of large number of N trajectories {x(i)}Ni=1 under the distribution Q∗. Then according
to the strong law of large numbers, as N →∞,

1

N

N∑
i=1

1x(i)(tf)∈∂Xs

a.s.→ Pfail(x0, t0, u
∗(·)) x(i) ∼ Q∗(x).

This implies that a Monte Carlo algorithm is applicable to numerically evaluate Pfail. However, such a Monte Carlo algo-
rithm is impractical since it is difficult to sample trajectories from Q∗ as the optimal policy u∗ is unknown. Fortunately,
an importance sampling scheme is available which allows us to numerically evaluate Pfail using a trajectory ensemble
sampled from the distribution P (x) of the uncontrolled system (2). The next theorem provides the details:

Theorem 5. Suppose we generate an ensemble of a large number of N trajectories {x(i)}Ni=1 under the distribution P .
For each i, let r(i) be the path reward of the sample path i given by

r(i) = exp

(
−
ϕ
(
x(i)(tf); η

)
λ

− 1

λ

∫ tf

t

V
(
x(i)(r), r

)
dr

)
(34)

Let us define r :=
∑N

i=1 r
(i). Then as N →∞,

N∑
i=1

r(i)

r
1x(i)(tf)∈∂Xs

a.s.→ Pfail(x0, t0, u
∗(·)) x(i) ∼ P (x).

14

Proof. Notice that Pfail in (33) can be equivalently written as

Pfail(x0, t0, u
∗(·)) =

∫
T
1x(tf)∈∂Xs

dQ∗

dP
(x)P (dx) (35)

where the Radon-Nikodym derivative dQ∗

dP (x) represents the likelihood ratio of observing a sample path x under distribu-
tions Q∗ and P . Now, according to Theorem 19 in the Appendix 11.3, for a given ensemble of N trajectories {x(i)}Ni=1

sampled under the distribution P , the likelihood ratio dQ∗

dP of observing a sample path x(i) is given by r(i)/r
1/N . Therefore,

using (35), by the strong law of large numbers, as N →∞ we get

1

N

N∑
i=1

r(i)/r

1/N
1x(i)(tf)∈∂Xs

a.s.→ Pfail(x0, t0, u
∗(·))

x(i) ∼ P (x)

which completes the proof.

Theorem 5 provides us a sampling-based approach to numerically compute the probability of failurePfail(x0, t0, u
∗(·)).

According to Theorem 5, if we sample N trajectories under distribution P , then we can approximate the probability of
failure as

Pfail(x0, t0, u
∗(·))≈

N∑
i=1

r(i)

r
1x(i)(tf)∈∂Xs

x(i) ∼ P (x). (36)

where r(i) is defined by (34) and r =
∑N

i=1 r
(i). Note that sampling under distribution P is easy since we only need to

simulate the uncontrolled system dynamics (2).

2.6.4 Generalized Risk-Estimation PDE

In select applications, requiring that the solution to (30) satisfies the boundary condition everywhere on ∂Q can be overly
restrictive. In this section, we consider a generalized version of PDE (30) by reducing the requirement in the boundary
condition to hold only for a subset of points on the boundary (x, t) ∈ ∂Q called the regular points. We show that if a
solution of such a PDE exists, then we can still interpret it as the probability of failure. Before we state the generalized
version of Theorem 4 we need the following definitions and an auxiliary lemma.

Definition 2 (Regular and irregular points). A point (x, t) ∈ ∂Q is called regular forQwith respect to x(t) ifPx,t (tf = t0) =
1; i.e., a.a. paths x(t) starting from x at time t leave Q immediately. Otherwise the point (x, t) is called irregular.

Example 1. Consider a punctured ball B = {x ∈ Rd : 0 < ∥x∥ < 1} and its boundary ∂B = {x ∈ Rd : ∥x∥ = 1}∪{0}
i.e, the boundary ∂B contains the surface of the ball B and the origin. If a Brownian motion w(t) starts at the origin, it
returns to B immediately. On the other hand, if it starts anywhere on the surface of B, it leaves B immediately (c.f., the
0-1 law [59, Corollary 9.2.7]). Hence, the origin is irregular for B with respect to w(t), whereas all points on the surface
of B are regular.

For more interesting examples of regular and irregular points, see [62, Chapter 4].

Definition 3 (Hunt’s condition). A process x(t) is said to satisfy Hunt’s condition if every semipolar set for process x(t)
is also polar for x(t). A semipolar set is a countable union of thin sets and a measurable set E is called thin for process
x(t) if for all starting points, x(t) does not hit E immediately, a.s. A measurable set F is called polar for process x(t) if
for all starting points, x(t) never hits F , a.s.

Hunt’s condition holds for Brownian motion [63]. See [59] for a discussion on the requirements on the coefficients of
the SDE (1) in order for it to satisfies Hunt’s condition.

Lemma 2. Let QI denote the set of irregular points of Q with respect to process x(t). Suppose x(t) satisfies the Hunt’s
condition. Then (x(tf), tf) /∈ QI a.s.

Proof. From the definition of irregular points, the set QI is semipolar for x(t). Furthermore, since x(t) satisfies Hunt’s
condition, the set QI is polar for x(t), and therefore (x(tf), tf) /∈ QI a.s.

15

We can now state the generalized version of Theorem 4 as follows:

Theorem 6. Suppose x(t) satisfies Hunt’s condition and there exists a function J : Q → R such that

(a) J(x, t) is continuously differentiable in t and twice continuously differentiable in x in domain Q;

(b) J(x, t) solves the following PDE for a given admissible control policy u(·):
−∂tJ=(f+Gu)

T
∂xJ+

1

2
Tr
(
ΣΣT∂2xJ

)
, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

J(x, t) = ϕ′(y), ∀ regular (y, s)∈∂Q. (37)

Then, Pfail is given by
Pfail = J(x0, t0).

Proof. Let J(x, t) be the function satisfying (a) and (b). By Dynkin’s formula, for each (x, t) ∈ Q we have

Ex,t [J (x(tf), tf)] = J(x, t) +Ex,t

[∫ tf

t

(
∂tJ+(f+Gu)T(∂xJ)+

1

2
Tr
(
ΣΣT∂2xJ

))
ds

]
.

The second term on the right side contains, in parentheses, the PDE in (37) and is therefore zero. Hence, we obtain

J(x, t) = Ex,t [J (x(tf), tf)] . (38)

Since x(t) satisfies Hunt’s condition, from Lemma 2 we know that (x(tf), tf) does not belong to the irregular set of Q
a.s. Hence from the boundary condition of PDE (37),

Ex,t[J(x(tf), tf)]=Ex,t [ϕ
′ (x(tf))] . (39)

Combining (38) and (39) we obtain
J(x0, t0) = Pfail.

Note that Theorem 6 is more useful than Theorem 4 for the risk estimation in Example 1 because the boundary
condition at the origin is relaxed.

Remark 2. PDE (37) can be considered as a special case of the generalized Dirichlet-Poisson problem, the existence of
whose solution is proved in [59, Chapter 9].

2.6.5 Solution of the Dual Problem (14)

We present two numerical approaches to solve the dual problem (14). The first approach is the finite difference method
(FDM) which is one of the most popular approaches to numerically solve the partial differential equations. Despite its
popularity, this approach suffers from the curse of dimensionality and the computational cost grows exponentially as the
state-space dimension increases. To circumvent this difficulty, we also present the path integral approach. This approach
is more computationally amenable. It allows us to numerically solve the dual problem (14) online via open-loop samples
of system trajectories.

Finite Difference Method:

When the geometry of the computational domain is simple, it is straightforward to form discrete approximations to spatial
differential operators with a high order of accuracy via Taylor series expansions [64]. A finite number of grid points are
placed at the interior and on the boundary of the computational domain, and the solution to the PDE is sought at these fi-
nite set of locations. Once the grid is determined, finite difference operators are derived to approximate spatial derivatives
in the PDE. In this work, centered formulas are used to approximate spatial operators with up to eight-order accuracy at
the interior grid points. For grid points near the boundary, asymmetric formulas that maintain the order of accuracy are
used in conjunction with Dirichlet boundary condition. The use of finite difference operators yields a system of ordinary
differential equations (ODEs) that is integrated in time with the desired method. The MATLAB suite of ODE solvers [65]

16

provides a number of efficient ODE integrators with high-temporal order, error control, and variable time-stepping that
advance the solution in time.

Note that FDM numerically solves the HJB PDE (28) backward in time. The solution needs to be computed offline
and the optimal control policy needs to be stored in a look-up table. For a given state and time, the optimal input for
real-time control is obtained from the stored look-up table. Similar to the PDE (28), FDM can be utilized to compute
the probability of failure by numerically solving the PDE (30) backward in time. It is well known that the computational
complexity and memory requirements of FDM increase exponentially as the state-space dimension increases. Therefore,
FDM is intractable for systems with more than a few state variables. Moreover, this method is inconvenient for real-time
implementation since the HJB PDE needs to be solved backward in time. Also, FDM computes a global solution over
the entire domain Q even if the majority of the state-time pairs (x, t) will never be visited by the actual system. To over-
come these difficulties, we present the path integral approach which numerically solves the dual problem (14) in real-time.

Path Integral Approach:

Assumption 1 implies that the stochastic noise has to enter the system dynamics via the control channels. Therefore,
in what follows, we assume that system (1) can be partitioned into subsystems that are directly and non-directly driven by
the noise as: [

dx(1)

dx(2)

]
=

[
f (1)(x, t)
f (2)(x, t)

]
dt+

[
0

G(2)(x, t)

]
u(x, t)dt+

[
0

Σ(2)(x, t)

]
dw

where 0 denotes a zero matrix of appropriate dimensions. The path integral control framework utilizes the fact that the
solution to PDE (28) admits the Feynman-Kac representation (29). The optimal control input u∗(x, t; η) (16) can be
obtained by taking the gradient of (29) with respect to x [6, 3]. We obtain

u∗(x, t; η)dt = G (x, t)
Ex,t

[
exp
(
− 1

λS
)
Σ(2) (x, t) dw(t)

]
Ex,t

[
exp
(
− 1

λS
)] , (40)

where matrix G (x, t) is defined as

G(x, t)=R−1(x, t)G(2)⊤(x, t)
(
G(2)(x, t)R−1(x, t)G(2)⊤(x, t)

)−1

.

and S represents the cost-to-go of a trajectory of system x̂(t) starting at (x, t) , i.e.,

S = ϕ
(
x̂(t̂f); η

)
+

∫ t̂f

t

V (x̂(t), t) dt.

To evaluate expectations in (29) and (40) numerically, we can discretize the uncontrolled dynamics (2) and use Monte
Carlo sampling [6]. Unlike FDM, the path integral framework solves PDE (28) in the forward direction. It evaluates a
solution locally without requiring knowledge of the solution nearby so that there is no need for a (global) discretization
of the computational domain. For real-time control, Monte Carlo simulations can be performed in real-time in order to
evaluate (40) for the current (x, t). Similar to (29) and (40), the failure probability (36) can be numerically computed by
Monte Carlo sampling using the importance sampling method. The Monte Carlo simulations can be parallelized by using
the Graphic Processing Units (GPUs) and thus the path integral approach is less susceptible to the curse of dimensionality.

Now, we present the path-integral-based dual ascent algorithm to numerically solve the dual problem (14). The algo-
rithm for that is given in Algorithm 1. The algorithm starts by dealing with a special case η = 0. We find the optimal policy
(40). Then, we compute Pfail (x0, t0, u

∗(·; η = 0)) by importance-sampling approach. If Pfail (x0, t0, u
∗(·; η = 0)) ≤ ∆,

we return u∗(·; η = 0). Otherwise, the algorithm chooses some initial η and iteratively updates the dual variable
η ← η + γ(Pfail(x0, t0, u

∗(·; η)) − ∆) with a learning rate of γ. Once |Pfail (x0, t0, u
∗(·; η)) − ∆| is less than the

error tolerance ϵ, we return the policy u∗(·; η). Thus, using the Algorithm 1, we can numerically solve the original
chance-constrained problem (6) online via real-time Monte-Carlo simulations.

2.7 Simulation Results
In this section, we demonstrate the effectiveness of the proposed control synthesis framework in addressing the chance-
constrained problem defined in (6). In Section 2.7.1, we employ a 2D state-space velocity input model to solve a mobile
robot navigation problem using Algorithm 1. The solution derived from the path-integral method is compared with that

17

Algorithm 1 Dual ascent via path integral approach
Require: Error tolerance ϵ > 0, learning rate γ > 0

1: Set η = 0
2: Find u∗(·; η = 0) using (40)
3: Compute the failure probability Pfail (x0, t0, u

∗(·; η = 0)) using (36).
4: if Pfail (x0, t0, u

∗(·; η = 0)) ≤ ∆ then
5: return u∗(·; η = 0)
6: end if
7: Choose initial η > 0.
8: while True do
9: Find u∗(·; η) using (40)

10: Compute the failure probability Pfail (x0, t0, u
∗(·; η)) using (36)

11: if |Pfail (x0, t0, u
∗(·; η))−∆| < ϵ then

12: return u∗(·; η)
13: end if
14: η ← η + γ(Pfail (x0, t0, u

∗(·; η))−∆)
15: end while

of FDM. In Section 2.7.2, we extend the analysis to a unicycle model in a 4D state-space, and in Section 2.7.3, to a car
model with a 5D state-space. In both the 4D and 5D cases, we solve the corresponding chance-constrained problems
using Algorithm 1. Due to the high computational cost of applying FDM to models with 4D and 5D state spaces, we rely
exclusively on the path-integral method for these examples.

2.7.1 Input Velocity Model

The problem is illustrated in Figure 3 where a particle robot wants to navigate in a 2D space from a given start position
(shown by a yellow star) to the origin (shown by a magenta star), by avoiding the collisions with the red obstacle and the
outer boundary.

Let the states of the system be px and py , the positions along x and y, respectively. The system dynamics are given by
the following SDEs:

dpx = vxdt+ σdwx, dpy = vydt+ σdwy, (41)

where vx and vy are velocities along x and y directions, respectively. Assume

vx = vx + ṽx, vy = vy + ṽy,

where vx and vy are nominal velocities given by vx = −kxpx and vy = −kypy for some constants kx and ky . Hence,
(41) can be rewritten as

dpx = −kxpxdt+ ṽxdt+ σdwx, dpy = −kypydt+ ṽydt+ σdwy. (42)

Now, the goal is to design an optimal control policy u∗ = [ṽ∗x ṽ
∗
y]

⊤ for the chance-constrained problem (6). The initial

state is x0 = [−0.3 0.3]⊤. We set kx = ky = 0.5, V (x(t)) = p2x(t) + p2y(t), ψ (x(T)) = p2x(T) + p2y(T), R =

[
1 0
0 1

]
,

t0 = 0, T = 2, and σ2 = 0.01. In Algorithm 1, we set the error tolerance ϵ = 0.01 and learning rate γ = 0.1. For FDM,
the computational domain is discretized by a grid of 96 × 96 points and the solver ode45 is used with a relative error
tolerance equal to 10−3. In the path integral simulation, for Monte Carlo sampling, 105 trajectories and a step size equal
to 0.01 are used.

In Figure 3, we plot 100 sample trajectories generated using synthesized optimal policies for two values of ∆. The
trajectories are color-coded; the blue paths collide with the obstacle or the outer boundary, while the green paths converge
in the neighborhood of the origin (the goal position). For a lower value of ∆ the weight of blue paths is less and that of
the green paths is more as compared to the higher value of ∆. In other words, the failure probability for the lower value
of ∆ is less as compared to that of the higher value of ∆.

Figure 4 represents how the value of η∗ and Pfail(x0, t0, u
∗(· ; η∗)) change with respect to ∆. The values obtained

using path integral control and FDM are compared. We expect that the value of η∗ reduces and that of Pfail increases as

18

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

(a) ∆ = 0.25 (b) ∆ = 0.9

Figure 3: Robot navigation problem for the input velocity model. The start position is shown by a yellow star and the
target position (the origin) by a magenta star. 100 sample trajectories generated using optimal control policies for two
values of ∆ are shown. The trajectories are color-coded; blue paths collide with the obstacle or the outer boundary, while
the green paths converge in the neighborhood of the magenta star.

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14
PI

FDM

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

PI

FDM

(a) η∗ vs ∆ (b) Pfail(x0, t0, u
∗(· ; η∗)) vs ∆

Figure 4: η∗ and Pfail(x0, t0, u
∗(· ; η∗)) vs ∆ for input velocity model using path integral control and FDM.

∆ increases. Note that the graphs are not monotonic. This is because we used numerical methods to solve the PDE (28),
which caused some errors in the computation of η∗ and Pfail(x0, t0, u

∗(· ; η∗)).
Figure 5 shows the comparison of solutions J(x, t0) and u∗(x, t0) of the PDE (15) obtained from FDM (top row) and

path integral (bottom row) for η = 0.05 and η = 0.13. Since the path integral is a sampling-based approach its solutions
are noisier compared to FDM, as expected. Notice that for η = 0.05, due to a lower boundary value, the control inputs
u∗(x, t0) push the robot towards the obstacle or the outer boundary from the most part of the safe region Xs, except near
the origin (the target position). Whereas, for η = 0.13, aggressive inputs u∗(x, t0) are applied near the boundary to force
the robot to go towards the goal position.

Figure 6 shows the colormaps of the failure probabilities of the synthesized optimal policies for ∆ = 0.25 and ∆ = 0.9
as functions of initial position. Notice that the region of higher failure probabilities is more for ∆ = 0.9 than that for the
lower value of ∆ = 0.25.

The factors that affect the computation speed of FDM include the grid size, the choice of an ODE solver and its error
tolerances. Whereas the computation speed of path integral depends on the number of Monte Carlo samples and the
number of time steps. The computation time is evaluated on a machine with an Intel Core i7-9750H CPU clocked at 2.6
GHz. Both FDM and path integral approaches are implemented in MATLAB. Path integral simulations are run parallelly
using MATLAB’s parallel processing toolbox and the GPU Nvidia GeForce GTX 1650. The average number of iterations
required by Algorithm 1 to converge for both FDM and path integral is 3. We choose the initial η to be 0.05 and the
learning rate γ to be 0.1. For FDM, the average computation time for each iteration is approximately 20 sec. For the
path integral framework, the average computation time required for each iteration is 3 sec. Note that no special effort was
made to optimize the algorithm for speed. We plan to reduce the computation time of the algorithm in future work.

2.7.2 Unicycle Model

The problem is illustrated in Figure 7. Similar to the problem in Section 2.7.1, a particle robot wants to navigate in a
2D space from a given start position (shown by a yellow star) to the origin (shown by a magenta star), by avoiding the
collisions with the red obstacles and the outer boundary. The states of the unicycle model x = [px py s θ]⊤ consist of its

19

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

(a) J(x, t0) for η = 0.05 (b) u∗(x, t0) for η = 0.05 (c) J(x, t0) for η = 0.13 (d) u∗(x, t0) for η = 0.13

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

(e) J(x, t0) for η = 0.05 (f) u∗(x, t0) for η = 0.05 (g) J(x, t0) for η = 0.13 (h) u∗(x, t0) for η = 0.13

Figure 5: Input velocity model: comparison of solutions J(x, t0) and u∗(x, t0) obtained from FDM (a-d) and path integral
(e-h) for η = 0.05 and η = 0.13. The optimal control inputs u∗(x, t0) in (b, d, f, h) are plotted together with contours of
J(x, t0).

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

1

-0.4 -0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

1

(a) ∆ = 0.25 (b) ∆ = 0.9

Figure 6: Colormaps of the failure probabilities of the optimal policies synthesized for the input velocity model as func-
tions of initial position.

x− y position [px py]
⊤, speed s and heading angle θ ∈ [0, 2π]. The system dynamics are given by the following SDE:

dpx
dpy
ds
dθ

=−k

px
py
s
θ

 dt+

s cos θ
s sin θ

0
0

dt+

0 0
0 0
1 0
0 1

([aω
]
dt+

[
σ 0
0 ν

]
dw

)
. (43)

The control input u :=
[
a ω

]⊤
consists of acceleration a and angular speed ω. σ and ν are the noise level parameters.

In the simulation, we set σ = ν = 0.1, k = 0.2, t0 = 0, T = 10, x0 =
[
−0.4 −0.4 0 0

]⊤
, V (x) = p2x + p2y and

ψ (x(T)) = p2x(T) + p2y(T). We solve the chance-constrained problem (6) via path integral approach using Algorithm 1.
Since the state-space of the system is of high order we do not use FDM to solve this problem. For Monte Carlo sampling,
104 trajectories and a step size equal to 0.01 are used.

In Figure 7, we plot 100 sample trajectories generated using synthesized optimal policies for two values of ∆. The
trajectories are color-coded similar to the problem in Section 2.7.1. For a lower value of ∆ the weight of blue paths is less
and that of the green paths is more as compared to the higher value of ∆. In other words, the failure probability for the
lower value of ∆ is less as compared to that of the higher value of ∆.

Figure 8 represents how the value of η∗ and Pfail(x0, t0, u
∗(· ; η∗)) change with respect to ∆. As expected the value

of η∗ reduces and that of Pfail increases as ∆ increases.

20

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) ∆ = 0.2 (b) ∆ = 0.9

Figure 7: Robot navigation problem for the unicycle model. The start position is shown by a yellow star and the target
position (the origin) by a magenta star. 100 sample trajectories generated using optimal control policies for two values of
∆ are shown. The trajectories are color-coded; blue paths collide with the obstacle or the outer boundary, while the green
paths converge in the neighborhood of the magenta star.

0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

(a) η∗ vs ∆ (b) Pfail(x0, t0, u
∗(· ; η∗)) vs ∆

Figure 8: η∗ and Pfail(x0, t0, u
∗(· ; η∗)) vs ∆ for unicycle model using path integral control.

The algorithm is implemented on the same machine mentioned in Section 2.7.1. It is run in MATLAB, and the Monte
Carlo simulations are run parallelly using MATLAB’s parallel processing toolbox. The average number of iterations
required by the proposed algorithm to converge is 4. We choose the initial η to be 0.6 and the learning rate γ to be 0.08.
The average computation time required per iteration is 2.9 sec. Note that no special effort was made to optimize the
algorithm for speed. We plan to reduce the computation time of the algorithm in future work.

2.7.3 Car Model

The problem is illustrated in Figure 9. A car wants to navigate in a 2D space from a given start position (shown by a yellow
star) to the origin (shown by a magenta star), by avoiding the collisions with the red obstacles and the outer boundary. The
states of the car model

[
px py s θ ϕ

]⊤
consists of its x− y position

[
px py

]⊤
, the speed s, heading angle θ and

the front wheel angle ϕ. L is the inter-axle distance. The system dynamics are given by the following SDE:
dpx
dpy
ds
dθ
dϕ

=−k

px
py
s
0
0

 dt+

s cos θ
s sin θ

0
s tanϕ

L
0

dt+

0 0
0 0
1 0
0 0
0 1

([
a
ζ

]
dt+

[
σ 0
0 ν

]
dw

)
. (44)

The control input u :=
[
a ζ

]⊤
consists of acceleration a and the front wheel angular rate ζ. σ and ν are the noise level pa-

rameters. In the simulation, we set σ = ν = 0.07, k = 0.2, t0 = 0, T = 10, L = 0.05, x0 =
[
−0.4 −0.4 0 0 0

]⊤
,

V (x) = p2x+p
2
y and ψ (x(T)) = p2x(T)+p

2
y(T). We solve the chance-constrained problem (6) via path integral approach

using Algorithm 1. Since the state-space of the system is of high order we do not use FDM to solve this problem. For
Monte Carlo sampling, 104 trajectories and a step size equal to 0.1 are used.

In Figure 9, we plot 100 sample trajectories generated using synthesized optimal policies for two values of ∆. The
trajectories are color-coded similar to the previous two examples. We can observe that the failure probability for the
lower value of ∆ is less as compared to that of the higher value of ∆. Figure 10 represents how the value of η∗ and
Pfail(x0, t0, u

∗(· ; η∗)) change with respect to ∆. As expected the value of η∗ reduces and that of Pfail increases as ∆
increases.

21

The algorithm is implemented on the same machine mentioned in the previous two examples. It is run in MATLAB,
and the Monte Carlo simulations are run parallelly using MATLAB’s parallel processing toolbox. The average number of
iterations required by the proposed algorithm to converge is 11. We choose the initial η to be 0.77 and the learning rate γ
to be 0.1. The average computation time required per iteration is 12 sec. Note that no special effort was made to optimize
the algorithm for speed. We plan to reduce the computation time of the algorithm in future work.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) ∆ = 0.2 (b) ∆ = 0.9

Figure 9: Robot navigation problem for a car model. The start position is shown by a yellow star and the target position
(the origin) by a magenta star. 100 sample trajectories generated using optimal control policies for two values of ∆ are
shown. The trajectories are color-coded; blue paths collide with the obstacle or the outer boundary, while the green paths
converge in the neighborhood of the magenta star.

0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

(a) η∗ vs ∆ (b) Pfail(x0, t0, u
∗(· ; η∗)) vs ∆

Figure 10: η∗ and Pfail(x0, t0, u
∗(· ; η∗)) vs ∆ for a car model using path integral control.

2.8 Publications
• A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path

Integral and Finite Difference Methods,” 2022 IEEE Conference on Decision and Control (CDC)

• A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time Chance-
Constrained Stochastic Optimal Control,” submitted to Transactions on Automatic Control

2.9 Future Work
In order to prove the strong duality between the primal chance-constrained problem (6) and its dual (14), we required
Assumption 3, where we assumed continuity of the function η 7→ Pfail(x0, t0, u

∗(x, t; η)) : [0,∞) → [0, 1]. We will
conduct a formal analysis which will prove that the Assumption 3 holds true under mild conditions. Along with that, we
plan to reduce the computation time of the proposed algorithm. We also plan to conduct the sample complexity analysis of
the path integral control in order to investigate how the accuracy of Monte Carlo sampling affects the solution of chance-
constrained SOC problems. Some preliminary results on this topic are presented in [7, 66]. In order to achieve a strong
duality between the primal chance-constrained problem and its dual, in this work, we require a certain assumption on the
system dynamics and the cost function (Assumption 1). This assumption restricts the class of applicable system models
and cost functions. In future work, we plan to find alternatives in order to get rid of this restrictive assumption (one such
solution is provided in [37]). Another topic of future investigation is chance-constrained stochastic games.

22

3 Two-Player Zero-Sum Stochastic Differential Game

3.1 Motivation and Literature Review
Interactions among multiple agents are prevalent in many fields such as economics, politics, and engineering. Game
theory studies the collective decision-making process of multiple interacting agents [67]. Two-person zero-sum games
involve two players with conflicting interests, and one player’s gain is the other’s loss. Pursuit-evasion games (competition
between a pursuer and an evader) [68, 69] and robust control (competition between a controller and the nature) [67] are
some examples of two-player zero-sum games. In this work, we consider a two-player stochastic differential game (SDG)
in which the outcome of the game depends not only on the decision of both players but also on the stochastic input added
by nature.

When the game dynamics and cost functions are known, the saddle-point equilibrium of a two-player zero-sum SDG
can be characterized by the Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE). The analytical solutions of
the HJI PDEs are in general not available, and one needs to resort on numerical methods such as grid-based approaches
[70], [71] to solve these PDEs approximately. However, the grid-based approaches suffer from curse of dimensionality,
making them computationally intractable for systems with large dimensions [72]. Moreover, in general, the solutions can
not be computed in real-time using these methods; they need to be precomputed as lookup tables and recalled for use in
an online setting [71].

Several reinforcement learning algorithms have also been proposed to find approximate solutions to game problems. A
reinforcement-learning-based adaptive dynamic programming algorithm is proposed in [73] to determine online a saddle-
point solution of linear continuous-time two-player zero-sum differential games. A deep reinforcement learning algorithm
based on updating players’ policies simultaneously is proposed in [74] to solve two-player zero-sum games.

These methods assume deterministic game dynamics and do not consider system uncertainties. In the presence of
system uncertainties, the performance and safety of both players are affected unpredictably, if the uncertainties are not
accommodated while designing policies. An effective uncertainty evaluation method, the multivariate probabilistic col-
location, was used in [75] with integral reinforcement learning to solve multi-player SDGs for linear system dynamics
online. A two-person zero-sum stochastic game with discrete states and actions is solved in [76] using Bayesian inverse
reinforcement learning. Common challenges in the learning-based methods include training efficiency, and rigorous the-
oretical guarantees on convergence and optimality. Moreover, these approaches do not explicitly take into account the
players’ failure probabilities while synthesizing their policies.

In our work, we formulate a continuous-time, nonlinear, two-player zero-sum SDG on a state space modeled by an Itô
stochastic differential equation. Since the stochastic uncertainties in our model are unbounded, both players have nonzero
probabilities of failure. Failure occurs when the state of the game enters into predefined undesirable domains, and one
player’s failure is the other’s success. Our objective is to solve a game in which each player seeks to minimize its risk of
failure (failure probability)2 along with its control cost; hence, the name risk-minimizing zero-sum SDG. We explain the
risk-minimizing zero-sum SDG via the following example:

Example 2. Consider a pursuit-evasion game in which the pursuer catches the evader if they are less than a certain
distance ρ away from each other. In this setting, the evader wishes to minimize its probability of entering the ball of
radius ρ centered at the pursuer’s location. Whereas, the pursuer wishes to minimize the probability of staying out of
the ball of radius ρ centered at the evader’s location. The goal of each player is to balance the trade-off between the
above probabilities (probabilities of failure) and the control cost (for e.g., their energy consumption). This problem can
be formulated as a risk-minimizing zero-sum SDG.

We derive a sufficient condition for this game to have a saddle-point equilibrium and show that it can be solved via
an HJI PDE with Dirichlet boundary condition. Under certain assumptions on the system dynamics and cost function, we
establish the existence and uniqueness of the saddle-point equilibrium of the formulated risk-minimizing zero-sum SDG.
Furthermore, explicit expressions for the saddle-point policies are derived which can be numerically evaluated using path
integral control. The use of the path integral technique to solve stochastic games was proposed in [79]. In this work, we
generalize their work and develop a path integral formulation to solve HJI PDEs with Dirichlet boundary conditions and
find saddle-point equilibria of risk-minimizing zero-sum SDGs. The proposed framework allows us to solve the game
online using Monte Carlo simulations of system trajectories, without the need for any offline training or precomputations.

2Throughout this section the word “risk” simply means the probability of failure. It is not our intention to discuss various risk measures existing in
the literature (e.g. [77, 78]).

23

3.2 Contributions
The contributions of this work are as follows:

1. We formulate a continuous-time risk-minimizing zero-sum SDG in which players aim at balancing the trade-off be-
tween the failure probability and control cost. A sufficient condition for this game to have a saddle-point equilibrium
is derived, and it is shown that this game can be solved via an HJI PDE with a Dirichlet boundary condition.

2. Under certain assumptions on the system dynamics and cost function, we establish the existence and uniqueness of
the saddle-point solution. We also obtain explicit expressions for the saddle-point policies which can be numerically
evaluated using path integral control.

3. The proposed control synthesis framework is validated by applying it to two classes of risk-minimizing zero-sum
SDGs, namely a disturbance attenuation problem and a pursuit-evasion game.

Notations
We use the same notations as described in Section 2.

3.3 Problem Formulation
We consider a two-player zero-sum stochastic differential game (SDG) on a finite time horizon t ∈ [t0, T], t0 < T .
Consider a class of control-affine stochastic systems described by the following :

dx(t) =f (x(t), t) dt+Gu (x(t), t)u(x(t), t)dt+Gv (x(t), t) v (x(t), t) dt+Σ(x(t), t) dw(t) (45)

where x(t) ∈ Rn is the state, u(x(t), t) ∈ Rm is the control input of the first player (henceforth called the agent),
and v(x(t), t) ∈ Rl that of the second player (called the adversary). w(t) ∈ Rk is a k-dimensional standard Wiener
process on a suitable probability space (Ω,F , P). We assume sufficient regularity in the functions f (x(t), t) ∈ Rn,
Gu (x(t), t) ∈ Rn×m, Gv (x(t), t) ∈ Rn×l and Σ (x(t), t) ∈ Rn×k so that a unique strong solution of (45) exists [59,
Chapter 1]. Both the control inputs u, and v are assumed to be square integrable (i.e., of finite energy).

Let Xs ⊆ Rn be a bounded open set representing a safe region, ∂Xs be its boundary, and closure Xs = Xs ∪ ∂Xs.
Suppose that the agent tries to keep the system (45) in the safe set Xs for the entire time horizon [t0, T] of the game,
whereas the adversary seeks the opposite. For example, in pursuit-evasion games, the safe set Xs could be a region
outside the ball of radius ρ, centered at the adversary’s location. Or, in the disturbance rejection problems, if an agent
wishes to navigate through obstacles in the presence of adversarial disturbances, then the region outside obstacles could
be considered as a safe set. Suppose, when the game starts at t0, the system is in the safe set i.e., x(t0) = x0 ∈ Xs. If the
system leaves the region Xs at any time t ∈ (t0, T], we say that the agent fails. On the other hand, the adversary fails if
the system stays in Xs for all t ∈ [t0, T]. Therefore, we define the agent’s probability of failure P ag

fail as

P ag
fail :=Px0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

 (46)

and the adversary’s probability of failure P ad
fail := 1− P ag

fail. We define the terminal time tf of the game as

tf :=

{
T, if x(t) ∈ Xs,∀t ∈ (t0, T),

inf {t ∈ (t0, T) : x(t) /∈ Xs}, otherwise.

Alternatively, tf can be defined as
tf := inf{t > t0 : (x(t), t) /∈ Q} (47)

where Q = Xs × [t0, T) is a bounded set with the boundary ∂Q = (∂Xs × [t0, T]) ∪ (Xs × {T}), and closure Q =
Q ∪ ∂Q = Xs × [t0, T]. Note that by the above definitions, (x(tf), tf) ∈ ∂Q and the agent’s failure probability P ag

fail in
(46) can be written in terms of tf as

Px0,t0

 ∨
t∈(t0,T]

x(t) /∈ Xs

=Ex0,t0

[
1x(tf)∈∂Xs

]
.

24

Since the stochastic uncertainty of the system (45) is modeled with an unbounded distribution, both the agent and the
adversary have nonzero probabilities of failure. In our two-player SDG setting, we assume that both players aim to design
an optimal policy against the worst possible opponent’s policy such that their own risk of failure is minimized. Therefore,
we define the following risk-minimizing cost function:

C (x0, t0;u, v) := η Ex0,t0

[
1x(tf)∈∂Xs

]
+ Ex0,t0

[
ψ(x(tf))·1x(tf)∈Xs

+

∫ tf

t0

L(x(t), u(t), v(t), t)dt

]
. (48)

The first term indicates the penalty associated with the agent’s failure with the weight parameter η > 0. ψ (x(tf)) and
L (x(t), u(t), v(t), t) denote the terminal and running costs, respectively. Note that the game ends at tf and the system
doesn’t evolve after that (this is motivated by the applications where “collision” or “capture” ends the game). Therefore,
the running cost is integrated over the time horizon [t0, tf]. The agent tries to minimize C by controlling u, whereas the
adversary tries to maximize it by controlling v. The weight parameter η balances the trade-off between the control cost
and the failure probability.

Notice that if we define ϕ : Xs → R as:

ϕ (x) := ψ (x) · 1x∈Xs
+ η · 1x∈∂Xs

,

then, the first term in (48) can be absorbed in a new terminal cost function ϕ as follows:

C(x0, t0;u, v)=Ex0,t0

[
ϕ (x(tf))+

∫ tf

t0

L(x, u, v, t) dt
]
. (49)

In this work, we consider the following running cost that is quadratic in u and v:

L(x, u, v, t)=V (x, t)+
1

2
uTRu(x, t)u−

1

2
vTRv(x, t) v (50)

where V (x, t) denotes a state dependent cost, and Ru (x, t) ∈ Rm×m and Rv (x, t) ∈ Rl×l are given positive definite
matrices (for all values of x and t). Now, we formulate our risk-minimizing zero-sum SDG as follows:

Problem 3 (Risk-Minimizing Zero-Sum SDG).

min
u

max
v

Ex0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤Ruu−

1

2
v⊤Rvv+V

)
dt

]
s.t. dx =fdt+Guudt+Gvvdt+Σdw, (51)

x(t0) = x0.

where the admissible policies u, v are measurable with respect to the σ-algebra generated by x(s), t0 ≤ s ≤ t.

Note that Problem 3 is a variable-terminal-time zero-sum SDG where the terminal time is determined by (47).

3.4 Synthesis of Optimal Control Policies
This section presents the main results. In Section 3.4.1, we show that Problem 3 can be solved using backward dynamic
programming which results into an HJI PDE with a Dirichlet boundary condition. In Section 3.4.2, we find a solution of
a class of risk-minimizing zero-sum SDGs via path integral control.

3.4.1 Backward Dynamic Programming

Notice that the cost function of the risk-minimizing zero-sum SDG (51) possesses the time-additive Bellman structure.
Therefore, Problem 3 can be solved by utilizing the principle of dynamic programming. For each (x, t) ∈ Q, and
admissible policies u, v over [t, T), define the cost-to-go function:

C (x, t;u, v) =Ex,t

[
ϕ (x(tf))

]
+ Ex,t

[∫ tf

t

(
1

2
u⊤Ruu−

1

2
v⊤Rvv + V

)
dt

]
.

25

Definition 4 (Saddle-point solution). [80, Chapter 2]: Given a two-player zero-sum differential game, a pair of admissible
policies (u∗, v∗) over [t, T) constitutes a saddle-point solution, if for each (x, t) ∈ Q, and admissible policies (u, v) over
[t, T),

C(x, t;u∗, v) ≤ C∗ := C(x, t;u∗, v∗) ≤ C(x, t;u, v∗).

The quantity C∗ is the value of the game. The value of the game is defined if it satisfies the following relation

C∗=min
u

max
v

C (x, t;u, v) = max
v

min
u
C (x, t;u, v) .

The following theorem provides the sufficient condition for a saddle-point solution of Problem 3 to exist.

Theorem 7. Suppose there exists a function J : Q → R such that

(a) J(x, t) is continuously differentiable in t and twice continuously differentiable in x in the domain Q;

(b) J(x, t) solves the following stochastic HJI PDE:
−∂tJ=V +f⊤∂xJ+

1

2
Tr
(
ΣΣ⊤∂2xJ

)
+

1

2
(∂xJ)

⊤(
GvR

−1
v G⊤

v −GuR
−1
u G⊤

u

)
∂xJ, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

J(x, t) = ϕ(y), ∀(y, s) ∈ ∂Q. (52)

Then, the following statements hold:

(i) J(x, t) is the value of the game formulated in Problem 3. That is,

J (x, t) = min
u

max
v

C (x, t;u, v) = max
v

min
u
C (x, t;u, v) , ∀ (x, t)∈Q.

(ii) The optimal solution to Problem 3 is given by

u∗(x, t) = −R−1
u (x, t)Gu

⊤(x, t) ∂xJ(x, t) , (53)

v∗(x, t) = R−1
v (x, t)Gv

⊤(x, t) ∂xJ(x, t) . (54)

Proof. Let J(x, t) be the function satisfying (a) and (b). By Dynkin’s formula [59, 1], for each (x, t) ∈ Q we have

Ex,t [J (x(tf), tf)] = J(x, t) +Ex,t

[∫ tf

t

(
∂tJ+(f+Guu+Gvv)

T(∂xJ)+
1

2
Tr
(
ΣΣ⊤∂2xJ

))
ds

]
. (55)

By the boundary condition of the PDE (52),
J (x(tf), tf) = ϕ (x(tf)). Hence, from (55), we obtain

J(x, t) = Ex,t [ϕ (x(tf))]−Ex,t

[∫ tf

t

(
∂tJ+(f+Guu+Gvv)

T(∂xJ)+
1

2
Tr
(
ΣΣT∂2xJ

))
ds

]
.

Now, notice that the right-hand side of the PDE in (52) can be expressed as the minimum and maximum value of a
quadratic form in u and v, respectively, as follows:

−∂tJ=min
u

max
v

[
1

2
u⊤Ruu−

1

2
v⊤Rvv+V +(f+Guu+Gvv)

⊤
∂xJ +

1

2
Tr
(
ΣΣ⊤∂2xJ

)]
. (56)

Observe that the “min
u

”, “max
v

” operations in (56) can be interchanged. Hence, the game formulated in (51) satisfies the
Isaacs condition [81]. If û and v̂ represent the minimum and maximum values of the right-hand side of (56) respectively,
then

û = −R−1
u G⊤

u ∂xJ, v̂ = R−1
v G⊤

v ∂xJ. (57)

Therefore, for an arbitrary u, we have

−∂tJ≤

[
1

2
u⊤Ruu−

1

2
v̂⊤Rv v̂+V +(f+Guu+Gv v̂)

⊤
∂xJ +

1

2
Tr
(
ΣΣ⊤∂2xJ

)]
. (58)

26

Now, notice that the equality in (56) holds for any v. Replacing v by v̂ in (56) yields

J(x, t) = Ex,t [ϕ (x(tf))]−Ex,t

[∫ tf

t

(
∂tJ+(f+Guu+Gv v̂)

T(∂xJ)+
1

2
Tr
(
ΣΣ⊤∂2xJ

))
ds

]
. (59)

Combining (58) and (59), we obtain

J(x, t)≤Ex,t

[
ϕ(x(tf))+

∫ tf

t

(
1

2
uTRuu−

1

2
v̂TRv v̂ +V

)
ds

]
= C (x, t;u, v̂)

where the equality holds iff û = −R−1
u G⊤

u ∂xJ . Similarly, for an arbitrary v, we can show that

J(x, t) ≥ C (x, t; û, v) (60)

where the equality holds iff v̂ = R−1
v G⊤

v ∂xJ . Therefore, from Definition 4, it follows that the pair of policies (û, v̂)
defined in (57) provides the optimal solution to the zero-sum game formulated in Problem 3 and J(x, t) is the value of the
game.

Remark 3. Theorem 7 does not say anything about the existence of a function J(x, t) satisfying statements (a) and (b),
and it is not in the scope of this proposal. However, in Section 3.4.2, we focus on a special case in which (52) can be
linearized where the existence and uniqueness of such a function is guaranteed.

3.4.2 Path Integral Solution

In this section, we derive a path integral formulation to solve a class of risk-minimizing zero-sum SDGs that satisfy certain
assumptions on the system dynamics and cost function. Let ξ(x, t) be the logarithmic transformation of the value function
J(x, t) defined as

J(x, t) = −λ log (ξ (x, t)) (61)

where λ is a proportionality constant to be defined. Applying the transformation in (61) to (52) yields

∂tξ=

V ξ

λ
− 1

2
Tr
(
ΣΣ⊤∂2xξ

)
+

1

2ξ
(∂xξ)

T
ΣΣ⊤∂xξ +

λ

2ξ
(∂xξ)

⊤(
GvR

−1
v G⊤

v −GuR
−1
u G⊤

u

)
∂xξ−f⊤∂xξ, ∀(x, t) ∈ Q,

lim
(x,t)→(y,s)
(x,t)∈Q

ξ(x, t)=exp
(
−ϕ(y)

λ

)
, ∀(y, s) ∈ ∂Q.

(62)
Now, we make the following assumption:

Assumption 4. For all (x, t) ∈ Q, there exists a constant λ > 0 such that

Σ(x, t)Σ⊤(x, t)=λGu(x, t)R
−1
u (x, t)G⊤

u (x, t)− λGv(x, t)R
−1
v (x, t)G⊤

v (x, t). (63)

Assumption 4 is similar to the assumption required in the path integral formulation of a single agent stochastic control
problem (25). A possible interpretation of condition (63) is that in a direction with high noise variance, the agent’s control
cost has to be low whereas that of the adversary has to be high. Therefore, the weights of the control cost Ru and Rv

need to be tuned appropriately for the given diffusion coefficient Σ(x, t) and the control gains Gu(x, t) and Gv(x, t) in
the system dynamics (45). Assumption 4 also implies that the stochastic noise has to enter the system dynamics via the
control channels. Therefore, in what follows, we assume that system (45) can be partitioned into subsystems that are
directly and non-directly driven by the noise as:[

dx(1)

dx(2)

]
=

[
f (1)(x, t)
f (2)(x, t)

]
dt+

[
0

Gu
(2)(x, t)

]
u(x, t)dt+

[
0

Gv
(2)(x, t)

]
v(x, t)dt+

[
0

Σ(2)(x, t)

]
dw (64)

where 0 denotes a zero matrix of appropriate dimensions. By assuming a λ satisfying Assumption 4 holds in (62), we
obtain the linear PDE in ξ with Dirichlet boundary condition:

∂tξ=
V ξ
λ −f

⊤∂xξ − 1
2Tr

(
ΣΣ⊤∂2xξ

)
, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

ξ(x, t)=exp
(
−ϕ(y)

λ

)
, ∀(y, s)∈∂Q. (65)

27

The solution of a linear Dirichlet boundary value problem of the form (65) exits under a sufficiently regular boundary
condition, and it is unique [61, Chapter 6]. Furthermore, the solution admits the Feynman-Kac representation [82].
Suppose x̂(t) ∈ Rn is an uncontrolled process driven by the following SDE:

dx̂(t)=f(x̂(t),t)dt+Σ(x̂(t),t)dw(t) (66)

and let t̂f := inf{t > t0 : (x̂(t), t) /∈ Q}. Then, the solution of the PDE (65) is given as

ξ (x, t) = Ex,t

[
exp
(
− 1

λ
S (τ)

)]
(67)

where S (τ) denotes the cost-to-go of a trajectory τ of the uncontrolled system (66) starting at (x, t):

S (τ) = ϕ
(
x̂(t̂f)

)
+

∫ t̂f

t

V (x̂(t), t) dt. (68)

Equation (67) provides a path integral form for the exponentiated value function ξ (x, t), which can be numerically eval-
uated using Monte Carlo sampling of trajectories generated by the uncontrolled SDE (66).

We now obtain the expressions for the saddle-point policies via the following theorem:

Theorem 8. Suppose Assumption 4 holds and the system (45) can be partitioned as (64). Then, a saddle-point solution
of the risk-minimizing zero-sum SDG (51) exists, is unique, and is given by

u∗(x, t)dt=Gu(x, t)
Ex,t

[
exp
(
− 1

λS (τ)
)
Σ(2)(x, t) dw

]
Ex,t

[
exp
(
− 1

λS (τ)
)] , (69)

where

Gu=R−1
u G(2)

u

⊤(
G(2)

u R−1
u G(2)

u

⊤
−G(2)

v R−1
v G(2)

v

⊤)−1

and

v∗(x, t)dt=Gv (x, t)
Ex,t

[
exp
(
− 1

λS (τ)
)
Σ(2)(x, t) dw

]
Ex,t

[
exp
(
− 1

λS (τ)
)] , (70)

where

Gv=−R−1
v G(2)

v

⊤(
G(2)

u R−1
u G(2)

u

⊤
−G(2)

v R−1
v G(2)

v

⊤)−1

.

Proof. The existence and uniqueness of the saddle-point solution follow from the existence and uniqueness of the linear
Dirichlet boundary value problem (65) [61, Chapter 6] and from Theorem 7. The saddle-point solution u∗(x, t) (53) and
v∗(x, t) (54) can be computed by taking the gradient of (67) with respect to x and using the condition (63). (The derivation
of (53) and (54) is in the same vein as the derivation of optimal controls in single-agent settings [37, 3]; not presented here
for brevity.)

Equations (69) and (70) provide the path integral forms for the saddle-point equilibrium. Similar to (67), the expecta-
tions in (69) and (70) can be numerically evaluated in real-time via the Monte Carlo sampling of the trajectories generated
by the uncontrolled SDE (66). Path integral framework allows us to solve the game online without requiring any offline
training or precomputations. Even though Monte Carlo simulations must be performed in real-time in order to evaluate
(69, 70) for the current (x, t), these simulations can be massively parallelized through the use of GPUs.

3.5 Simulation Results
In this section, we apply the path integral framework to two classes of risk-minimizing zero-sum SDGs (51): a disturbance
attenuation problem and a pursuit-evasion game.

28

3.5.1 Disturbance Attenuation Problem

Consider a special class of systems (1):

dx=f(x, t)dt+Gu(x, t)
(
u(x, t)dt+v (x, t) dt+dw

)
(71)

where u (x, t) ∈ Rm is the control input, v (x, t) ∈ Rm is the bounded disturbance and w(t) ∈ Rm is a Wiener
process. Here, we have two sources of noise that corrupt the system’s control input u: the bounded noise v whose
statistics are unknown, and the white noise dw. In the disturbance attenuation problem, the objective is to design a
policy u in the presence of stochastic noise and bounded disturbance v such that the system’s control performance
Ex0,t0

[
ϕ (x(tf))+

∫ tf
t0

(
1
2u

⊤u+ V
)
dt
]

is minimized. This problem can be solved using the following zero-sum SDG,
where u is considered as a control input of the first player (agent) and v that of the second player (adversary):

min
u

max
v

Ex0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u− γ

2

2
vTv+V

)
dt

]
. (72)

γ is a given positive constant that determines the level of disturbance attenuation. Theorem 9 provides an upper bound on
the system’s control performance (in the presence of a bounded disturbance v) that can be obtained by solving the game
(72).

Theorem 9. Suppose (u∗γ , v
∗
γ) represent the saddle-point policies of the SDG (72) for any γ, and let

δγ := Eu∗
γ ,v

∗
γ

x0,t0

[∫ tf

t0

v⊤v dt

]
(73)

where the superscript on E denotes the policies under which the expectation is computed. Then, for all adversarial policies
v such that Eu∗

γ ,v

x0,t0

[∫ tf
t0
v⊤v dt

]
≤ δ (for any δ > 0), we get the following upper bound on the system’s control performance

in the presence of disturbance v:

Eu∗
γ ,v

∗
γ

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V

)
dt

]
+
γ2

2
(δ − δγ) ≥ Eu∗

γ ,v

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V

)
dt

]
. (74)

Proof. Consider cost of the SDG (72) under the saddle-point policies (u∗γ , v
∗
γ):

Eu∗
γ ,v

∗
γ

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V− γ

2

2
v⊤v

)
dt

]
= Eu∗

γ ,v
∗
γ

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V

)
dt

]
− γ2

2
δγ (75a)

≥ Eu∗
γ ,v

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V− γ

2

2
v⊤v

)
dt

]
(75b)

≥ Eu∗
γ ,v

x0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
u⊤u+V

)
dt

]
− γ2

2
δ. (75c)

The equation (75a) follows from (73). For any adversarial policy v, the inequality (75b) follows because v∗γ maximizes

the cost in (72). The inequality (75c) follows from the bound on Eu∗
γ ,v

x0,t0

[∫ tf
t0
v⊤v dt

]
. Using (75a) and (75c), we get the

desired inequality (74).

In order to solve the HJI PDE associated with the game (72) via the path integral framework described in Section
3.4.2, it is necessary to find a constant λ > 0 (by Assumption 4) such that

λ

(
1− 1

γ2

)
= 1.

Therefore, for all γ > 1, Assumption 1 is satisfied and as a consequence, the zero-sum SDG (72) admits a unique saddle-
point solution.

29

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) γ2 = 2, P ag
fail = 0.9 (b) γ2 = 7, P ag

fail = 0.64

Figure 11: Unicycle navigation in the presence of bounded and stochastic disturbances. The start position is shown by
a yellow star and the target position (the origin) by a magenta star. 100 sample trajectories generated using saddle-point
policies (u∗, v∗) for two values of γ are shown. The trajectories are color-coded; blue paths collide with the red obstacles
or the outer boundary, while the green paths converge in the neighborhood of the magenta star. The failure probabilities
of the agent P ag

fail are noted below each case.

We now present a simulation study of the disturbance attenuation problem using a unicycle navigation example.
Consider the following unicycle dynamics model:

dpx
dpy
ds
dθ

=−k

px
py
s
θ

 dt+

s cos θ
s sin θ

0
0

dt+

0 0
0 0
1 0
0 1

([aω
]
dt+

[
∆a
∆ω

]
dt+

[
σ 0
0 ν

]
dw

)
,

where (px, py), s and θ denote the position, speed, and the heading angle of the unicycle, respectively. The control input
u :=

[
a ω

]⊤
consists of acceleration a and angular speed ω. v :=

[
∆a ∆ω

]⊤
is the bounded disturbance acting on

the system’s control input, and dw ∈ R2 is the white noise with σ and ν being the noise level parameters. As illustrated
in Figure 11, the unicycle aims to navigate in a two-dimensional space from its initial position (represented by the yellow
star) to the origin (represented by the magenta star), in finite time, while avoiding the red obstacles and the outer bound-
ary. The white region that lies between the outer boundary and the obstacles is the safe region Xs. This is a disturbance
attenuation problem since the unicycle aims to design its control policy u in order to minimize the control performance
and risk of failure (collision with the obstacles or the outer boundary) under worst-case disturbance v. Therefore, we can
formulate this problem as the risk-minimizing zero-sum SDG (72). In the simulation, we set σ = ν = 0.1, k = 0.2,
t0 = 0, T = 10, x0 =

[
−0.4 −0.4 0 0

]⊤
, V (x) = p2x + p2y and ψ (x(T)) = p2x(T) + p2y(T). In order to evaluate

the optimal policies (69) and (70) via Monte Carlo sampling, 104 trajectories and a step size equal to 0.01 are used. We
demonstrate two experiments.

Experiment 1

In this experiment, we set η = 0.67 and plot in Figure 11 100 sample trajectories generated using synthesized saddle-point
policies (u∗, v∗) for two values of γ. The trajectories are color-coded; the blue paths collide with the obstacles, while the
green paths converge in the neighborhood of the origin (the target position). The figure shows that for a higher value of γ
i.e. when the adversary becomes less powerful, the failure probability of the agent P ag

fail reduces.

Experiment 2

In this experiment, we set γ2 = 3, η = 1, and study the effect of ignoring the adversary. First, we compute saddle-
point policies (u∗, v∗) for the game (72) same as Experiment 1 and plot in Figure 12-(a) 100 sample trajectories generated
using (u∗, v∗). In this case, the agent is aware of the adversary and designs its policy u∗ cautiously. The probability of
failure is 23%. In the second case, the agent is not aware of the presence of the adversary and computes its policy (say)
ũ∗ by solving a single agent optimization problem. However, in reality, the adversary is present and suppose it follows
the policy v∗. Figure 12-(b) shows 100 sample trajectories generated using (ũ∗, v∗). In this case, the agent’s performance
is poor, it fails 65% of the time. The color-coding of the trajectories is the same as in Experiment 1.

30

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) Agent is aware of the adversary, P ag
fail = 0.23 (b) Agent is not aware of the adversary, P ag

fail = 0.65

Figure 12: Unicycle navigation in the presence of bounded and stochastic disturbances. (a) The agent is aware of the
presence of an adversary. 100 sample trajectories generated using saddle-point policies (u∗, v∗). (b) The agent is not
aware of the presence of an adversary. 100 sample trajectories generated using (ũ∗, v∗). The failure probabilities of the
agent P ag

fail are noted for each case.

3.5.2 Pursuit-Evasion Game

Consider a two-player zero-sum SDG on a finite time horizon [t0, T], in which the adversary is chasing the agent and the
agent is trying to escape from the adversary. We will call the adversary as a pursuer and the agent as an evader. Suppose
the evader and the pursuer are moving in a two-dimensional plane according to

dpEx = uxdt+ σE
x dw

E
x , dpPx = vxdt+ σP

x dw
P
x , dpEy = uydt+ σE

y dw
E
y , dpPy = vydt+ σP

y dw
P
y , (76)

where xE :=
[
pEx pEy

]⊤
is the position and u :=

[
ux uy

]⊤
is the control input of the evader. Similarly, xP :=[

pPx pPy
]⊤

and v :=
[
vx vy

]⊤
are the position and control input of the pursuer. wE

x , w
E
y , w

P
x , w

P
y are independent

one-dimensional standard Brownian motions. If at any time t ∈ (t0, T], the pursuer gets within a distance ρ of the evader,
then it catches the evader and the evader fails. On the other hand, if the evader avoids getting within a distance ρ of the
pursuer for the entire time horizon [t0, T], then that’s a failure for the pursuer. The pursuer aims at designing its control
policy v in order to maximize the probability of catching the evader, whereas the evader seeks the opposite by designing u.
For this two-player differential game, it is the relative position of the pursuer and evader that is important (and relevant),
rather than their absolute positions. Let x :=

[
px py

]
be the evader’s position with respect to the pursuer where

px = pEx − pPx , py = pEy − pPy

and the origin coincides with the pursuer’s position. Thus, the coordinate system is attached to the pursuer and is not fixed
in space. The system x follows the SDE

dx =

[
dpx
dpy

]
=

[
ux
uy

]
dt−

[
vx
vy

]
dt+

[
σx 0
0 σy

]
dw (77)

where σx =
√
(σE

x)
2 + (σP

x)
2, σy =

√
(σE

y)
2 + (σP

y)
2 and w is a two-dimensional standard Brownian motion. In this

game, the safe set Xs can be defined as Xs :=
{
x ∈ R2 : ∥x∥ > ρ

}
. Suppose the control cost matrix Ru of the evader

is unity and that of the pursuer Rv = rv
2, where rv is a given positive scalar constant. Therefore, the risk-minimizing

zero-sum SDG takes the form:

min
u

max
v

Ex0,t0

[
ϕ (x(tf))+

∫ tf

t0

(
1

2
uTu− rv

2

2
vTv+V

)
dt

]
. (78)

In order to solve the associated HJI equation of this game via the path integral framework, it is necessary to find a constant
λ > 0 (by Assumption 1) such that

λ

(
1− 1

rv2

)
= 1.

Therefore, for all rv > 1, Assumption 1 is satisfied and as a consequence, the zero-sum SDG (78) admits a unique
saddle-point solution.

31

-0.25 0 0.25 0.5 0.75

-0.1

0.1

0.3

0.5

0.7

Figure 13: Two sample trajectories of the relative position of the players in a pursuit-evasion game. The start position
of the trajectories is shown by a yellow star. The red disc of radius ρ = 0.1, centered at the origin represents that the
pursuer is within the distance ρ of the evader. The green trajectory never enters the red disc in the horizon [t0, T], thus, it
represents a case when the evader wins. The blue trajectory enters the red disc and thus represents a case when the pursuer
wins.

1 1.5 2 2.5
0.05

0.1

0.15

0.2

0.25

Figure 14: Failure probabilities of the agent (i.e., evader) as a function of rv , when the players follow the saddle-point
policies (u∗, v∗).

In the simulation, we set σE
x = σE

y = σP
x = σP

y =
√
0.1, ρ = 0.1, t0 = 0, T = 2, x0 =

[
0.3 0.3

]⊤
, V (x) =

ψ (x(T)) = 0, η = 0.2, rv2 = 2. Figure 13 shows a plot of two sample trajectories of the system (77) generated using
synthesized saddle-point policies (u∗, v∗). The trajectories start from x0 shown by the yellow star. The red disc of radius
ρ = 0.1, centered at the origin represents that the pursuer is within a distance ρ of the evader. The green trajectory never
enters the red disc in the horizon [t0, T], thus, it represents a case when the evader escapes from the pursuer. The blue
trajectory, on the other hand, enters the red disc and thus represents a case when the pursuer catches the evader. Figure 14
shows a plot of failure probabilities of the agent (i.e., evader) as a function of rv , when the players follow the saddle-point
policies (u∗, v∗). These values are computed using naı̈ve Monte Carlo sampling, with 400 sample trajectories. The plot
shows that as the control cost weight rv of the adversary (i.e., pursuer) increases, the chances of the evader getting caught
reduces.

The aim of the presented simulation studies is to validate the proposed theoretical formulation of the risk-minimizing
zero-sum SDGs. Future work will emphasize scaling this framework to higher dimensional and more complex game
dynamics.

3.6 Publications
• A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential

Game via Path Integral Control,” 2023 IEEE Conference on Decision and Control (CDC)

3.7 Future Work
In the future, we plan to conduct sample complexity analysis for path integral control in order to investigate how the
accuracy of Monte Carlo sampling affects the solution of SDGs. The central challenge in using the path integral framework
is the particular requirement on the relationship between the cost function and the noise covariance. This requirement
restricts the class of applicable system models and cost functions. In future work, we plan to find alternatives in order to

32

get rid of this restrictive requirement (one such solution is provided in [37]). Another topic of future investigation could
be chance-constrained stochastic games in which each player would aim to satisfy a hard bound on its failure probability.

4 Task Hierarchical Control

4.1 Motivation and Literature Review
Robotic systems with a large number of degrees of freedom offer significant versatility; however, this also introduces
redundancies. These systems are often used to accomplish multiple subtasks with varying levels of importance, allowing
for the establishment of a task hierarchy. One of the most frequently applied methods to accomplish task hierarchical
control is the null-space projection technique [83, 84, 85]. In the null-space projection, the top priority task is executed by
employing all the capabilities of the system. The second priority task is then applied to the null space of the top priority
task. In other words, the task on the second level is executed as well as possible without disturbing or interfering with
the first level. The task on level three is then executed without disturbing the two higher-priority tasks, and so forth. The
null-space projection technique is based on a hierarchical arrangement of the involved tasks and can be interpreted as
instantaneous local optimization.

The null-space projection technique has been widely applied, such as in multi-robot team control [86], whole-body be-
havior synthesis [87], and manipulator control [88]. A comprehensive overview and comparison of null-space projections
is given in [88]. In the literature [83, 88], the individual controllers for the tasks in the hierarchy are designed using simple
low-level controllers such as proportional-integral-derivative (PID) controllers. While these controllers are easy to design
and are capable of generating control inputs in real time, there is no systematic way to optimize the overall performance
of the hierarchy of controllers. Global optimization techniques such as dynamic programming on the other hand minimize
some performance index across a whole trajectory. For example, to design optimal control policies for a linear system
with a quadratic cost function, the linear quadratic regulator (LQR) is widely used. For nonlinear systems and cost func-
tions, approaches such as iterative LQR (ILQR), and differential dynamic programming (DDP) can be utilized. However,
even though global optimization solutions perform better than local optimization solutions, they are impractical for online
feedback control, due to the heavy computational requirements. In this work, we employ the path integral control method,
a stochastic optimal control framework that can be applied to nonlinear systems and enables the computation of optimal
control inputs in real time through Monte Carlo simulations.

Based on the foundational work of [2, 3], the path integral method can be defined as a sampling-based algorithm to
compute control input at each time step from a large number of Monte-Carlo simulations of the uncontrolled dynamics.
Unlike traditional optimal control methods, the path integral approach can directly deal with stochasticity and nonlinearity
[82], [89, 90]. Moreover, unlike dynamic programming, it can evaluate control input without solving a high-dimensional
Hamilton-Jacobi-Bellman partial differential equation [82]. The Monte Carlo simulations can also be highly parallelized,
leveraging the GPU resources available on modern robotics platforms [6], making it particularly effective for real-time
control applications.

This work integrates the path integral control approach with the null-space projection technique to overcome their
individual limitations and enhance their respective strengths. We explain our idea via the following example:

Example 3. Consider a platoon of robots navigating in an obstacle-filled environment, tasked with three goals in de-
scending order of importance:

1. Avoiding collisions with obstacles

2. Steering the platoon’s centroid toward a goal position

3. Maintaining specific distances between the robots

Designing an optimal controller using only the path integral method for each robot in the platoon would present scalability
challenges due to the method’s sampling-based nature. On the other hand, simple low-level controllers (such as PID),
while computationally efficient, are difficult to tune manually for a better performance. We propose using local controllers
for tasks 1 and 3 while applying the path integral controller to the more complex task 2. In this way, the path integral
controller optimizes the centroid’s movement, while simpler tasks are handled by local controllers.

In [86], the authors address the issue of the task hierarchical controller falling into local minima by complementing the
low-level controllers with the A* search algorithm. In graph-based methods like A*, the optimal trajectory is generated
in the workspace, requiring an additional tracking controller to be designed separately, taking into account the system’s

33

dynamics. In contrast, the path integral controller computes the optimal policy directly, eliminating the need for such
a decoupled approach. Furthermore, path integral controllers can adapt in real time making them particularly suitable
for dynamic environments. Graph-based algorithms like A* are primarily designed for static environments and are less
effective in dynamic scenarios, as they require re-planning the trajectory each time the environment changes. Although
there are graph-based algorithms, such as RRTX, capable of handling dynamic environments [91], these approaches tend
to have higher computational costs compared to static planners and often require substantial memory resources as the
number of samples increases.

4.2 Contributions
The contributions of this work are as follows:

1. We introduce a new framework for hierarchical task control that combines the null-space projection technique with
the path integral control method. This leverages Monte Carlo simulations for real-time computation of optimal
control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated
optimal control technique.

2. Despite the wide applicability of the path integral approach, it has not been utilized for solving the task hierarchical
control problem to the best of the authors’ knowledge. This expands the applicability of path integral control to
multi-task robotic systems, enabling a more robust handling of task prioritization.

3. Our simulation studies demonstrate the effectiveness of the proposed approach, showing how it overcomes the
limitations of the state-of-the-art methods by optimizing task performance.

4.3 Preliminaries
Let q ∈ Rn be the configuration of a robot, where n is the number of degrees-of-freedom (DOFs). We introduce K task
variables

σk = hk(q) ∈ Rmk , k ∈ K (79)

where mk is the dimension of task k and K = {1, 2, ...,K} denotes a set of the indices. The hierarchy is defined such
that σ1 is at the top priority and σi is located higher in the priority order than σj if i < j. The task variables σk represent
functional quantities (e.g., a cost or a potential function) as part of the desired actions, and hk is a differentiable nonlinear
function. Our goal is to devise a policy for the robotic system that would accomplish the K subtasks σk, k ∈ K in their
descending order of importance. In the rest of the proposal, for notational compactness, the functional dependency on q
is dropped whenever it is unambiguous.

Differentiating (79) with respect to time, we get

σ̇k = Jk(q)q̇, Jk(q) =
∂hk(q)

∂q
(80)

where Jk(q) ∈ Rmk×n is the Jacobian matrix and q̇ represents the velocity of the robot in the configuration space. This
velocity can be computed by inverting the mapping (80) [92], [93], [94]. However, in the case of a redundant system
i.e., when n > mk, the problem (80) admits infinite solutions. A common approach is to solve for the minimum-norm
velocity, which leads to the least-squares solution:

q̇ = J†
k(q)σ̇k

where J†
k(q) = J⊤

k (q)(Jk(q)J
⊤
k (q))−1 is the right pseudo-inverse of the Jacobian matrix Jk(q). In the following Jk(q) is

assumed to be non-singular, hence of full row rank.
Similar to (80), the acceleration in the configuration space can be computed by further differentiating (80)

σ̈k = Jk(q)q̈ + J̇k(q)q̇.

The minimum-norm solution for the acceleration q̈ is obtained as:

q̈ = J†
k(q)

(
σ̈k − J̇k(q)q̇

)
. (81)

34

Equation (81) provides a basic method to compute system acceleration in an open-loop style. To improve convergence, a
feedback term is added to (81), as suggested by [92] and [95], leading to the expanded form:

q̈ = J†
k(q)

({
σ̈k,d +Kp,kσ̃k +Kd,k

dσ̃k
dt

}
− J̇k(q)q̇

)
(82)

where σ̃k = σk,d−σk denotes the error between the desired task trajectory σk,d and the actual task trajectory σk which can
be computed from the system’s current configurations using (79). For task k, the terms Kp,k and Kd,k are proportional
and derivative gains, respectively, which shape the convergence of the error σ̃k. Equation (82) is called a closed loop
inverse kinematic version of the equation (81). The controller having a similar structure is presented in [92].

Note that in the above control input computation technique, the desired task trajectory σk,d is often chosen manually.
Due to the complexity of the architecture, it is often difficult to select an appropriate desired trajectory σk,d and low-level
controller gains Kp,k, Kd,k to optimize the overall system performance. Moreover, the above method is only a local
optimization technique as opposed to global optimization techniques which minimize some performance index across a
whole trajectory and typically offer better solutions compared to local optimization approaches.

4.4 Null-Space Projection
Consider a robotic system with a control-affine dynamics:

ẋ(t) = f(x) +G(x)u(t) (83)

where x(t) is the state of the system3, u(t) is the control input, f(x) is a drift term, and G(x) is the control coefficient.
In the rest of the proposal, for notational compactness, the functional dependencies on x, and t are dropped whenever it
is unambiguous. In the null-space projection technique, the control input u2 corresponding to the second-priority task is
projected onto the null space of the primary task using the formula:

u′2 = N2(q)u2 (84)

where u′2 is the projected control input that does not interfere with the primary task. The null-space projector N2(q) is
obtained by evaluating

N2(q) = I − J†
1(q)J1(q)

where J†
1(q) is the right pseudo-inverse of the primary task’s Jacobian J1, and I is an identity matrix of suitable dimen-

sions. Analogous to (84), for the remaining tasks in the hierarchy (2 < k ≤ K), the control inputs are projected as
u′k = Nk(q)uk, with the null-space projectors recursively computed as:

Nk(q) = Nk−1(q)
(
I − J†

k−1(q)Jk−1(q)
)

2 ≤ k ≤ K

and N1(q) = I . Here I is the identity matrix with suitable dimensions. Each task input is computed as if it were acting
alone; then before adding its contribution to the overall system control input, a lower-priority task is projected onto the null
space of the immediately higher-priority task so as to remove those control input components that would conflict with it.
This technique guarantees that lower-priority objectives are constrained and therefore do not interfere with higher-priority
objectives. As a result, the high-priority task is always achieved, and the lower ones are met only if they do not conflict
with the task of higher priority. The final control input can be formulated by adding up the primary task control input and
all the projected control inputs:

u = u1 +

K∑
k=2

u′k =

K∑
k=1

Nk(q)uk. (85)

Plugging (85) into (83), we get
ẋ(t) = f(x) +G(x)

∑
k∈K

Nk(q)uk. (86)

A natural question arises of how many tasks can be handled simultaneously using this approach. Let us suppose that
the primary task, of dimension m1 is fulfilled by n DOFs robotic system. The null space of its Jacobian (of full row

3Often the case, the configuration of a system q is part of its states; see examples in Section 4.5.

35

rank) is a space of dimensions n−m1. Supposing the secondary task of dimension m2 does not conflict with the primary
task (meaning that the secondary task acts in the null space of the primary task), the null space of their combination has
dimension n−m1 −m2. Choosing the tasks in a way they are not conflicting, it is useful to add tasks until

∑
mk = n.

Thus, once all the degrees of freedom of the system are covered, it is useless to add successive tasks of lower priority
since they will be projected onto an empty space (thus giving always a null contribution to the system control input). In
case of conflicting tasks, it is not possible to make any generic assumption regarding the useful number of tasks but, case
by case, the intersection among null spaces should be analyzed.

4.4.1 Integration of Null Space Projection and Path Integral Control

(a) Conventional task hierarchical control (b) Integration of null-space projection and
path integral control (proposed architecture)

Figure 15: Comparison of the conventional task hierarchical control approach and our proposed control approach, which
integrates null-space projection with path integral control.

In this section, we explain our proposed architecture. Consider a scenario where we need to accomplish K tasks,
however, only the k-th task is handled using a path integral controller. Here, we assume only one task is accomplished
using the path integral controller. A similar formulation can be extended to cases where multiple tasks are controlled using
path integral controllers. The control inputs for the other tasks ui, i ̸= k are designed using PD controllers (82). Using
(86), the system dynamics can be written as

ẋ(t) = f(x) +
∑

i∈K,i̸=k

G(x)Niui(t) +G(x)Nkuk(t). (87)

Defining G̃(x) = G(x)Nk, ũ = uk and

f̃(x) = f(x) +
∑

i∈K,i̸=k

G(x)Niui(t),

we can rewrite (87) as dx = f̃(x)dt + G̃(x)ũ dt. Note that the terms f̃(x) and G̃(x) are computed using the PD-like
low-level controllers (82) derived in Section 4.3 and the null-space projection explained in Section 4.4. Next, we derive a
path integral controller for the control input ũ.

First, we perturb ũ by adding a stochastic term: ũ dt→ ũ dt+ ŝ dw(t), where w(t) is a standard Brownian motion and
ŝ ∈ R is the diffusion coefficient. This perturbation allows the system to explore the policy space and discover a direction
that minimizes the cost. The perturbed system dynamics are then given by

dx = f̃(x)dt+ G̃(x) (ũ dt+ ŝ dw(t)) . (88)

Now we formulate the path integral control problem with the cost function:

EQ

[
ϕ(x(T)) +

∫ T

0

(
L(x(t)) +

α

2
∥ũ∥2

)
dt

]
(89)

for some α > 0. The expectation EQ is taken with respect to the dynamics (88). The cost function has a quadratic control
cost, an arbitrary state-dependent running cost L(x(t)), and a terminal cost ϕ(x(T)). Consider the example of a platoon

36

of robots illustrated in Section 4.1. Suppose task 2 (steering the platoon’s centroid toward a goal position) is controlled
by the path integral controller. Let there be I robots, with the configuration of each robot be denoted by qi, 1 ≤ i ≤ I ,
and the goal position be qg . In this case, the running cost L(x(t)) could be ∥

∑I
i=1

1
I qi(t) − qg∥

2, and the terminal cost
ϕ(x(T)) could be ∥

∑I
i=1

1
I qi(T)− qg∥

2.
We now formally state our problem:

Problem 4.

min
ũ

EQ

[
ϕ(x(T)) +

∫ T

0

(
L(x(t)) +

α

2
∥ũ∥2

)
dt

]
s.t. dx = f̃(x)dt+ G̃(x) (ũ dt+ ŝ dw(t)) .

It is well-known that the value function J(x, t) of Problem 4 satisfies the Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE) [6]:

−∂tJ=−
1

2α
(∂xJ)

⊤
G̃G̃⊤∂xJ+L+f̃⊤∂xJ +

ŝ2

2
Tr
(
G̃G̃⊤∂2xJ

)
, (90)

with the boundary condition J(x(T), T) = ϕ(x(T)). The optimal control is expressed in terms of the solution to this
PDE as follows:

ũ(x, t) = − 1

α
G̃⊤∂xJ (x, t) .

Therefore, in order to compute the optimal controls, we need to solve this backward-in-time PDE (90). Unfortunately,
classical methods for solving partial differential equations (such as the finite difference method) of this nature suffer from
the curse of dimensionality and are intractable for systems with more than a few state variables. The path integral control
framework provides an alternative approach by transforming the HJB PDE into a path integral. This transformation
allows us to approximate the solution using Monte Carlo simulations of the system’s stochastic dynamics. We use the
Feynman-Kac formula, which relates PDEs to path integrals [6]. First, we define a constant λ such that:

ŝ2 =
λ

α
. (91)

Next, using this constant λ, we introduce the following transformed value function ξ(x, t):

J(x, t) = −λ log (ξ (x, t)) . (92)

The transformation (92) allows us to write the HJB PDE (90) in terms of ξ(x, t) as

∂tξ=
Lξ

λ
− ŝ

2

2
Tr
(
G̃G̃⊤∂2xξ

)
+
ŝ2

2ξ
(∂xξ)

T
G̃G̃⊤∂xξ −

λ

2αξ
(∂xξ)

⊤
G̃G̃⊤∂xξ−f̃⊤∂xξ, (93)

with the boundary condition ξ(x(T), T) = exp
(
−ϕ(x(T))

λ

)
. Using (91) in equation (93), we can rewrite the PDE (90) as

a linear PDE in terms of ξ(x, t) as:

∂tξ=
Lξ

λ
−f̃⊤∂xξ −

ŝ2

2
Tr
(
G̃G̃⊤∂2xξ

)
(94)

with the boundary condition ξ(x(T), T) = exp
(
−ϕ(x(T))

λ

)
. This particular PDE is known as the backward Chap-

man–Kolmogorov PDE. Now we find the solution of the linearized PDE (94) using the Feynman-Kac lemma.

Theorem 10 (Feynman-Kac lemma). The solution to the linear PDE (94) exists. Moreover, the solution is unique in the
sense that ξ solving (94) is given by

ξ(x, t)=EP

[
exp

(
− 1

λ
S(x, t)

)]
(95)

where the expectation EP is taken with respect to the uncontrolled dynamics of the system (88) (i.e., equation (88) with
ũ = 0) starting at x, t. S(x, t) is the cost to go of the state-dependent cost of a trajectory given by

S(x, t) = ϕ (x(T))+

∫ T

t

L(x(t))dt.

37

Proof. The proof follows from [59, Theorem 9.1.1].

We now obtain the expression for the optimal control policy for Problem 4 via the following theorem.

Theorem 11. The optimal solution of Problem 4 exists, is unique and is given by

ũ∗(x, t)dt = G (x)
EP

[
exp

(
− 1

λS
)
ŝ G̃ (x) dw(t)

]
EP

[
exp

(
− 1

λS
)] , (96)

where the matrix G (x) is defined as G(x)= G̃⊤(x)
(
G̃(x)G̃⊤(x)

)−1

.

Proof. The existence and uniqueness of the optimal solution follow from the existence and uniqueness of the linear PDE
(94) (Theorem 10). The solution (96) can be computed by taking the gradient of (95) with respect to x [3, 6].

To evaluate expectations in (95) and (96) numerically, we discretize the uncontrolled dynamics and use Monte Carlo
sampling [6]. After discretizing the uncontrolled dynamics, we get xt+1 = xt + f̃(xt)∆t + ŝ G̃(xt)ϵ

√
∆t, where the

term ϵ is a time-varying vector of standard normal Gaussian random variables and ∆t is the step size. The term S(x, t)
is approximately given as S(x, t) ≈ ϕ (xT)+

∑τ
i=1 L(xt)∆t, where τ = T−t

∆t . Now suppose we generate M samples of
trajectories. Then we can approximate (96) as

ũ∗(x, t) ≈ G (xt)

∑M
j=1

[
exp

(
− 1

λS(x, t)
)
ŝ G̃ (xt) ϵ

]
∑M

j=1

[
exp

(
− 1

λS(x, t)
)√

∆t
] . (97)

Fig. 15 shows the comparison of the conventional task hierarchical control approach and our proposed control approach,
which integrates null-space projection with path integral control.

Remark 4. Note that as the number of samples M → ∞, (97) → (96) i.e., path integral controller yields a globally
optimal policy as M →∞.

Remark 5. Increasing the diffusion coefficient ŝ allows the system to explore a wider range of possibilities, but it also
introduces greater noise into the control input. Therefore, ŝ should be carefully selected to strike an appropriate balance
between exploration and control noise.

The control input for each task in the hierarchy can be computed independently of the others. This allows for paral-
lelization of the task hierarchy algorithm using GPUs, ensuring that the computational complexity remains manageable as
additional tasks are introduced, provided a sufficient number of GPUs are available. As the number of agents increases, the
dimensionality of the control inputs also grows. According to [7], in the case of the discrete-time path integral controller,
the required sample size exhibits a logarithmic dependence on the dimension of the control input. However, a formal
analysis of sample complexity for the continuous-time path integral controller remains an open area for future research.

4.5 Simulation Results
In this section, we present the simulation results for our proposed control framework.

4.5.1 Single Agent Example

Suppose a unicycle is navigating in a 2D space in the presence of an obstacle. The states of the unicycle model x =
[px py s θ]⊤ consist of its x− y position p := [px py]

⊤, speed s and heading angle θ ∈ [0, 2π]. The configuration of the
system q := [px py θ]

⊤ consists of its position p and the heading angle θ. The system dynamics are given by the following
equation:

ṗx(t)
ṗy(t)
ṡ(t)

θ̇(t)

 =

s(t) cos(θ(t))
s(t) sin(θ(t))

0
0

+

0 0
0 0
1 0
0 1

[a(t)ω(t)

]
. (98)

The control input u := [a ω]⊤ consists of acceleration a and angular speed ω. The simulation is set with T = 10 seconds
and ∆t = 0.01 seconds. This unicycle system has to accomplish the following two tasks in descending order of impor-
tance: 1) obstacle avoidance and 2) move-to-goal. We design a proportional-derivative (PD) controller for the obstacle

38

avoidance task and a path integral controller for the move-to-goal task.

Obstacle-avoidance

Suppose the obstacle is placed at c = [cx cy]
⊤ having radius r. In the presence of an obstacle in the advancing di-

rection, the robot aims to keep it at a safe distance from the obstacle. The obstacle avoidance task becomes active when
the robot is within a certain threshold distance and moving toward the obstacle. The task variable for obstacle avoidance
σ1 is defined as:

σ1 = ∥p− c∥, (99)

and the desired value of the task variable be σ1,d = r. Differentiating (99) with respect to t, we get

σ̇1 = J1v (100)

J1 =
[
px−cx
∥p−c∥

py−cy
∥p−c∥ 0

]
, v =

s cos θs sin θ
ω

 .
In order to devise the control input for task 1 u1 := [a1 ω1]

⊤, we further differentiate (100) and get

σ̈1 = δ1 + Λ1

[
a1
ω1

]
, (101)

where δ1 and Λ1 are defined as:

δ1 =
(py − cy)2 s2 cos2 θ + (px − cx)2 s2 sin2 θ

∥p− c∥3
, (102)

Λ1 =

[
px−cx
∥p−c∥ cos θ +

py−cy
∥p−c∥ sin θ

py−cy
∥p−c∥ s cos θ +

px−cx
∥p−c∥ s sin θ

]⊤
. (103)

Adding the feedback term to (101) similar to (82), we get

u1 =

[
a1
ω1

]
= Λ†

1

(
σ̈1,d +Kp,1σ̃1 +Kd,1

dσ̃1
dt
− δ1

)
where σ̃1 = σ1,d − σ1, and Kp,1 and Kd,1 are the proportional and derivative gains respectively for task 1.

Move-to-goal

In this task, the robot must reach the goal position pg := [pg,x pg,y]
⊤. The task variable σ2 is given as

σ2 = p =

[
px
py

]
(104)

and the desired value of the task variable will be σ2,d = pg .
First, we design the control input u2 = [a2 ω2]

⊤ using a PD controller similar to task 1. Differentiating (104) with
respect to time, we get

σ̇2 = J2v, J2 =

[
1 0 0
0 1 0

]
, v =

s cos θs sin θ
ω

 . (105)

Differentiating (105) further we get

σ̈2 = Λ2

[
a2
ω2

]
, Λ2 =

[
cos θ −s sin θ
sin θ s cos θ

]
. (106)

39

0 2 4 6 8 10
25

30

35

40

(a) Path followed without path integral controller (b) Distance from the goal over time

Figure 16: Results of single-agent example without the path integral controller

Adding the feedback term to (106) similar to (82), we get

u2 =

[
a2
ω2

]
= Λ†

2

(
σ̈2,d +Kp,2σ̃2 +Kd,2

dσ̃2
dt

)
where σ̃2 = σ2,d − σ2, and Kp,2 and Kd,2 are the proportional and derivative gains respectively for task 2.

Next, we design the control input u2 via the path integral controller. The perturbed dynamics are given by (88) with
the diffusion coefficient ŝ = 0.1. We formulate the cost function (89) with

L(x(t)) = 0.07 ∥p(t)− pg∥ , ϕ(x(T)) = L(x(T)), α = 10.

The number of Monte Carlo samples has been set to 104.
Lastly, the control input u2 is projected onto the null space of task 1 and we get the final control input as u =

u1 + (I − Λ†
1Λ1)u2 where I is the identity matrix of suitable dimensions.

0 2 4 6 8 10
0

10

20

30

40

(a) Paths followed with path integral controller (b) Mean distance from goal ± standard deviation

Figure 17: Results of single-agent example using the path integral controller

Fig. 16(a) represents the results of the hierarchical controller when both tasks are controlled using PD controllers.
As we can see, the robot initially moves towards the goal however, when it comes in the vicinity of the obstacle it drives
itself away from the obstacle, as the obstacle avoidance task has a higher priority. The PD controllers get stuck in a local
minima, the robot keeps oscillating as shown in Fig. 16(b) and never crosses the obstacle to reach the goal.

In Fig. 17, we show the results of the hierarchical controller when the first task is designed using a PD controller and
the second task is designed using a path integral controller. Note that the path integral controller is designed by perturbing
the control input ũ via a Brownian motion (88). Therefore, the outcome of the path integral controller is stochastic. In
Fig. 17(a), we plot 100 trajectories obtained by the devised hierarchical controller. We can see that all the trajectories
successfully avoid the obstacle by going around it and reaching the goal without getting stuck in local minimas. Fig. 17(b)
shows the mean distance to the goal over time, along with the standard deviation across the 100 trajectories. The solid
blue line represents the mean over the 100 trajectories and the sky-blue shaded area represents one standard deviation
from the mean.

4.5.2 Two Agents Example

Suppose two unicycles are navigating in a 2D space in the presence of an obstacle. The unicycle dynamics follow
the form in (98) where the state for each unicycle is defined as x(i) = [p

(i)
x p

(i)
y s(i) θ(i)]⊤, the configurations as

40

q(i) = [p
(i)
x p

(i)
y θ(i)]⊤, and the control inputs as u(i) = [a(i) ω(i)]⊤ for i = {1, 2}. The simulation is set with T = 10

seconds and ∆t = 0.1 seconds. This two-unicycle system has to accomplish the following three tasks in descending order
of importance: 1) obstacle avoidance, 2) steering the centroid of the robots toward a goal position and 3) maintaining a
specific distance between the two unicycles. We design a proportional-derivative (PD) controller for tasks 1) and 3), and
a path integral controller for task 2).

Obstacle-avoidance

Suppose the obstacle is placed at c = [cx cy]
⊤ having radius r. Similar to the single agent case, the obstacle avoid-

ance task becomes active when any of the robots is within a certain threshold distance and moving toward the obstacle.
Let σ(i)

1 represent the task variable for the robot i and σ1,d represent the desired task value for both the robots. σ(i)
1 and

σ1,d can be written as

σ
(i)
1 = ∥p(i) − c∥, i = {1, 2}, σ1,d = r. (107)

Similar to the single agent case, we differentiate (107) twice with respect to time for both robots and get

σ̈
(i)
1 = δ

(i)
1 + Λ

(i)
1

[
a
(i)
1

ω
(i)
1

]
(108)

where δ(i)1 and Λ
(i)
1 can be defined similar to (102), (103):

Finally, adding the feedback term to (108) similar to (82), we get the control input for obstacle avoidance:

u
(i)
1 =

[
a
(i)
1

ω
(i)
1

]
= Λ

(i)†

1

(̈
σ1,d +K

(i)
p,1σ̃

(i)
1 +K

(i)
d,1

dσ̃
(i)
1

dt
− δ(i)1

)

where σ̃(i)
1 = σ1,d − σ(i)

1 , and K(i)
p,1 and K(i)

d,1 are the proportional and derivative gains respectively for task 1 and for
i = {1, 2}. Also, note that

Λ1 =

[
Λ
(1)
1 0

0 Λ
(2)
1

]
, Λ†

1 =

[
Λ
(1)†

1 0

0 Λ
(2)†

1

]
.

Steering the robots’ centroid toward a goal position

This task involves steering the centroid of the robots toward a goal position pg . The task variable σ2 is given as

σ2 =
p(1) + p(2)

2
(109)

and the desired value of the task variable will be σ2,d = pg .
First, we design the control input u2 = [a

(1)
2 ω

(1)
2 a

(2)
2 ω

(2)
2]⊤ using a PD controller. Differentiating (109) twice with

respect to time we get

σ̈2 = Λ2

a
(1)
2

ω
(1)
2

a
(2)
2

ω
(2)
2

, Λ2=
1

2

cos θ(1) sin θ(1)

−s(1) sin θ(1) s(1) cos θ(1)

cos θ(2) sin θ(2)

−s(2) sin θ(2) s(2) cos θ(2)

⊤

. (110)

Adding the feedback term to (110) similar to (82), we get

u2 =

a
(1)
2

ω
(1)
2

a
(2)
2

ω
(2)
2

 = Λ†
2

(
σ̈2,d +Kp,2σ̃2 +Kd,2

dσ̃2
dt

)

where σ̃2 = σ2,d − σ2, and Kp,2 and Kd,2 are the proportional and derivative gains respectively for task 2.

41

Next, we design the control input for task 2) via a path integral controller. The perturbed dynamics are given by (88)
with the diffusion coefficient ŝ = 0.1. We formulate the cost function (89) with α = 10,

L(x(t))=0.21

∥∥∥∥p(1)(t)+p(2)(t)2
−pg

∥∥∥∥, ϕ(x(T)) = L(x(T)).

The number of Monte Carlo samples has been set to 104.

Maintaining a specific distance between two unicycles

In this task, the two unicycles must maintain the distance l between each other. The task variable σ3 is given as

σ3 =
1

2

(
p(1) − p(2)

)⊤ (
p(1) − p(2)

)
(111)

and the desired value of the task variable will be σ3,d = l2

2 . Differentiating (111) twice with respect to time we get

σ̈3 = δ3 + Λ3

a
(1)
3

ω
(1)
3

a
(2)
3

ω
(2)
3

 (112)

δ3=s
(1)2− 2s(1)s(2)

(
cos θ(1)cos θ(2)+sin θ(1)sin θ(2)

)
+s(2)

2

,

Λ3=

(
p
(1)
x −p(2)x

)
cos θ(1)+

(
p
(1)
y −p(2)y

)
sin θ(1)(

p
(2)
x −p(1)x

)
s(1) sin θ(1)+

(
p
(1)
y −p(2)y

)
s(1) cos θ(1)(

p
(2)
x −p(1)x

)
cos θ(2)+

(
p
(2)
y −p(1)y

)
sin θ(2)(

p
(1)
x −p(2)x

)
s(2) sin θ(2)+

(
p
(2)
y −p(1)y

)
s(2) cos θ(2)

⊤

.

Finally, adding the feedback term to (112) similar to (82), we get

u3 =

a
(1)
3

ω
(1)
3

a
(2)
3

ω
(2)
3

 = Λ†
3

(
σ̈3,d +Kp,3σ̃3 +Kd,3

dσ̃3
dt
− δ3

)

where σ̃3 = σ3,d − σ3, and Kp,3 and Kd,3 are the proportional and derivative gains respectively for task 3.
Lastly, the control input of the second task u2 is projected onto the null space of task 1, and the control input of task 3

u3 is projected onto the null spaces of both task 1 and task 2. This yields the overall control input as:

u = u1 + (I − Λ†
1Λ1)

(
u2 + (I − Λ†

2Λ2)u3

)
where I is the identity matrix of suitable dimensions.

In this experiment, we set the desired distance between the agents to l = 0.5 with the initial positions of the unicycles
at [p(1)x p

(1)
y p

(2)
x p

(2)
y]⊤ = [−4.5 0 − 4 0]⊤. Fig. 18(a) represents the results of the hierarchical controller when all

three tasks are controlled using PD controllers. As we can see, the centroid of the two unicycles initially moves towards
the goal however, when the unicycles come in the vicinity of the obstacle they drive themselves away from the obstacle,
as the obstacle avoidance task has a higher priority. Due to the limitations of the PD controllers, which get stuck in local
minima, the unicycles begin to oscillate and never successfully cross the obstacle to reach the goal, as seen in Fig. 18(b).

In Fig. 19, we present the results using the hierarchical controller, where tasks 1) and 3) are managed with PD
controllers, while task 2) is handled using a path integral controller. In Fig. 19(a), we plot 100 trajectories of the two agents
and their centroid. The hierarchical controller successfully ensures obstacle avoidance and steers the centroid towards the
goal in all trajectories, without getting stuck in local minima. Fig. 19(b) shows the mean distance of the centroid from the
goal over time, along with the standard deviation across the 100 trajectories. The solid blue line represents the mean and
the sky-blue shaded area represents one standard deviation from the mean.

42

0 2 4 6 8 10
3

3.5

4

4.5

(a) Path followed without path integral controller (b) Distance from the goal over time

Figure 18: Results of two-agents example without the path integral controller

0 2 4 6 8 10
0

1

2

3

4

5

(a) Paths followed with path integral controller (b) Mean distance from goal ± standard deviation

Figure 19: Results of two-agents example using the path integral controller

In Fig. 20(a), we show the distance between the agents over time when the controller for task 2) is designed using a
PD controller. Fig. 20(b) shows the mean distance between the agents over time, using the path integral controller for
task 2). The solid blue line represents the mean across 100 trajectories, while the shaded area corresponds to one standard
deviation. This figure highlights that the path integral controller helps the agents better maintain the desired distance
between each other compared to the PD controller.

4.6 Publications
• A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space Projection and Path Integral

Approach ,” submitted to 2023 American Control Conference (ACC)

• M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in Ob-
structed Environments,” submitted to IEEE Control Systems Letters (L-CSS)

• M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in Ob-
structed Environments,” submitted to 2023 American Control Conference (ACC)

4.7 Future Work
For future work, we aim to incorporate the importance sampling techniques into the path integral controller, which offers
improved sample efficiency compared to the standard approach. Additionally, we plan to extend the application of this
framework to large-scale multi-robot systems and robotic manipulators with a high number of degrees of freedom.

5 Deceptive Control

5.1 Motivation
We consider a deception problem between a supervisor and an agent. The supervisor delegates an agent to perform a
certain task and provides a reference policy to be followed in a stochastic environment. The agent, on the other hand,
aims to achieve a different task and may deviate from the reference policy to accomplish its own task. The agent uses a

43

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1
Dist. between agents
Desired dist. between agents

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1
Dist. between agents
Desired dist. between agents

(a) Without path integral controller: (b) With path integral controller: Mean distance
Distance between agents between agents ± standard deviation

Figure 20: Distance between agents over time

deceptive policy to hide its deviations from the reference policy. In this work, we synthesize the optimal policies for such
a deceptive agent.

We formulate the agent’s deception problem using motivations from hypothesis testing theory. We assume that the
supervisor aims to detect whether the agent deviated from the reference policy by observing the state-action paths of the
agent. On the flip side, the agent’s goal is to employ a deceptive policy that achieves the agent’s task and minimizes
the detection rate of the supervisor. We design the agent’s deceptive policy that minimizes the Kullback-Leibler (KL)
divergence from the reference policy while achieving the agent’s task. The use of KL divergence is motivated by the
log-likelihood ratio test, which is the most powerful detection test for any given significance level [96]. Minimizing the
KL divergence is equivalent to minimizing the expected log-likelihood ratio between distributions of the paths generated
by the agent’s deceptive policy and the reference policy. We also note that due to the Bratagnolle-Huber inequality [97],
for any statistical test employed by the supervisor, the sum of false positive and negative rates is lower bounded by a
decreasing function of KL divergence between the agent’s policy and the reference policy. Consequently, minimizing the
KL divergence is a proxy for minimizing the detection rate of the supervisor. We represent the agent’s task with a cost
function and formulate the agent’s objective function as a weighted sum of the cost function and the KL divergence.

We assume that the agent’s environment follows discrete-time continuous-state dynamics. When the dynamics are
linear, the supervisor’s (stochastic) policies are Gaussian, and the cost functions are quadratic, minimizing a weighted
sum of the cost function, and the KL divergence leads to solving a linear quadratic regulator problem. However, we
consider a broader setting with potentially non-linear state dynamics, non-quadratic cost functions, and non-Gaussian
reference policies. In this case, the agent’s optimal deceptive policy does not necessarily admit a closed-form solution.
While the agent’s problem can be solved using backward dynamic programming, this approach suffers from the curse of
dimensionality.

We show that, under the assumption of deterministic state dynamics, the optimal deceptive actions can be generated
using path integral control without explicitly synthesizing a policy. In detail, we propose a two-step randomized algorithm
for simulator-driven control for deception. At each time step, the algorithm first creates forward Monte Carlo samples of
system paths under the reference policy. Then, the algorithm uses a cost-proportional weighted sampling method to gen-
erate a control input at that time step. We show that the proposed approach asymptotically converges to the optimal action
distribution. Since Monte Carlo simulations can be efficiently parallelized, our approach allows the agent to generate the
optimal deceptive actions online.

5.2 Literature Review
Deception naturally occurs in settings where two parties with conflicting objectives coexist. The example domains for
deception include robotics [98, 99], supervisory control settings [100, 101], warfare [102], and cyber systems [103].

We formulate a deception problem motivated by hypothesis testing. This problem has been studied for fully ob-
servable Markov decision processes [100], partially observable Markov decision processes [101], and hidden Markov
models [104]. Different from [100, 101, 104] that study discrete-state systems and directly solve an optimization problem
for the synthesis of deceptive policies, we consider a nonlinear continuous-state system and provide a sampling-based so-
lution for the synthesis of deceptive policies. In the security framework, [105, 106] study the detectability of an attacker in
a stochastic control setting. Similar to our formulation, [105, 106] provide a KL divergence-based optimization problem.
While we consider an agent whose goal is to optimize a different cost function from the supervisor, [105, 106] consider
an attacker whose goal is to maximize the state estimation error of a controller.

44

KL divergence objective is also used in reinforcement learning [107, 108] to improve the learning performance and
in KL control frameworks [109, 110] for the efficient computation of optimal policies. In [110], Ito et al. studied the
KL control problem for nonlinear continuous-state space systems and characterized the optimal policies. Different from
[110], we provide a randomized control algorithm based on path integral approach that converges to the optimal policy
as the number of samples increases. Path integral control is a sampling-based algorithm employed to solve nonlinear
stochastic optimal control problems numerically [2, 3, 4]. It allows the policy designer to compute the optimal control
inputs online using Monte Carlo samples of system paths. The Monte Carlo simulations can be massively parallelized on
GPUs, and thus the path integral approach is less susceptible to the curse of dimensionality [6].

5.3 Contributions
The contributions of this work are as follows:

1. The work studies a problem of deception under supervisory control for continuous-state discrete-time stochastic
systems. Given a reference policy, we formalize the synthesis of an optimal deceptive policy as a KL control
problem and solve it using backward dynamic programming.

2. For the deterministic state dynamics, we propose a path-integral-based solution methodology for simulator-driven
control. We develop an algorithm based on Monte Carlo sampling to numerically compute the optimal deceptive
actions online. Furthermore, we show that the proposed approach asymptotically converges to the optimal control
distribution of the deceptive agent.

3. We present a numerical example to validate the derived simulator-driven control synthesis framework.

Notations
Let (X ,B(X)) be a measurable space whereX ⊆ Rn is a Borel set and B(X) is a Borel σ-algebra. Suppose (Ω,F ,P) is a
probability space. An (F ,B(X))-measurable random variable X is a function X : Ω→ X whose probability distribution
PX is defined by

PX(B) = P(X ∈ B) ∀B ∈ B(X)

PX2|X1
(·|·) : B(X2) × X1 → [0, 1] represents a stochastic kernel on X2 given X1. For simplicity, we write PX(dx) and

PX2|X1
(dx2|x1) as P (dx) and P (dx2|x1). If P1 and P2 are probability distributions on (X ,B(X)) then, the Kullback-

Leibler (KL) divergence from P1 to P2 is defined as

D(P2∥P1) =

∫
X
log

dP2

dP1
(x)P2(dx)

if the Radon-Nikodym derivative dP2

dP1
exists, and D(P2∥P1) = +∞ otherwise. Throughout this proposal, we use the

natural logarithm. Let T = {0, 1, ..., T} be the set of discrete time indices. A set of variables {x0, x1, . . . , xT } is denoted
by x0:T and a Cartesian product of sets X0×X1× . . .×XT is denoted by X0:T . PX0:T

(dx0:T) denotes the joint probability
distribution of random variables X0, X1, . . . , XT on (X0:T ,B(X0:T)).

5.4 Problem Formulation
We consider a setting in which a supervisor contracts an agent to perform a certain task. Suppose the agent operates in a
stochastic environment and follows discrete-time continuous-state dynamics. Let the state transition law of the agent be
denoted by P (dxt+1|xt, ut) : B(Xt+1) × Xt × Ut → [0, 1], where Xt ⊆ Rn and Ut ⊆ Rm be the spaces of states and
control inputs at time step t ∈ T := {0, 1, · · · , T}, respectively. Suppose a supervisor provides a (possibly stochastic)
reference policy {RUt|Xt

(·|xt)}T−1
t=0 to the agent and expects the agent to follow the policy to accomplish a certain task.

Here, RUt|Xt
: B(Ut)×Xt → [0, 1] is a stochastic kernel on Ut given Xt. The agent, on the other hand, aims to achieve a

different task by minimizing the following cost function, which we henceforth call as path cost:

C0:T (x0:T , u0:T−1) :=

T−1∑
t=0

Ct(xt, ut) + CT (xT) (113)

where Ct(·, ·) : Xt × Ut → R for t ∈ T and CT (·) : XT → R represent the stage costs and the terminal cost, re-
spectively. In order to minimize the path cost (113), the agent designs its policy (possibly stochastic) {QUt|Xt

(·|xt)}T−1
t=0

45

that may deviate from the reference policy {RUt|Xt
(·|xt)}T−1

t=0 . The agent also attempts to be stealthy to hide its devia-
tions from the supervisor. While the agent executes its policy Q, suppose the supervisor observes its state-action paths
{x0:T , u0:T−1}, and uses a likelihood ratio test to detect whether the agent deviates from the reference policy. According
to the Neyman–Pearson lemma, the likelihood-ratio test is optimal among all simple hypothesis tests for a given signif-
icance level [96]. In other words, we consider the worst-case scenario for the agent to be detected by the supervisor.
Suppose the initial state X0 = x0 of the agent is known. We denote the joint probability distribution of the state-action
paths induced via the reference policy by

RX0:T×U0:T−1
(dx0:T × du0:T−1) =

T−1∏
t=0

P (dxt+1|xt, ut)R(dut|xt), (114)

and the joint distribution induced via the agent’s policy by

QX0:T×U0:T−1
(dx0:T × du0:T−1) =

T−1∏
t=0

P (dxt+1|xt, ut)Q(dut|xt). (115)

Given a path {x0:T , u0:T−1} that is randomly sampled under the agent’s policy, the supervisor computes the log-likelihood
ratio (LLR)

π(x0:T , u0:T−1) = log
dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1). (116)

The supervisor decides that the agent uses the reference policy R if π(x0:T , u0:T−1) ≤ c, and deviates from R otherwise.
Here c is a constant chosen by the supervisor to obtain a specified significance level. An agent not wanting to be detected
by the supervisor must minimize the LLR (116). However, since the agent’s trajectories are stochastic, the agent cannot
directly minimize the LLR. We consequently consider that the agent’s goal is to minimize the expected LLR as follows:

Π = EQ

[
log

dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1)

]
(117)

where EQ[·] represents the expectation with respect to the probability distribution Q (115). Note that equation (117) also
defines the Kullback-Leibler (KL) divergence D(Q∥R) between the agent’s distribution Q and the reference distribution
R. Now we show that D(Q∥R) can be written as the stage-additive KL divergence between QUt|Xt

and RUt|Xt
:∫

B

QX0:T×U0:T−1
(dx0:T×du0:T−1)

=

∫
B

T−1∏
t=0

P (dxt+1|xt, ut)Q(dut|xt) (118a)

=

∫
B

(
T−1∏
t=0

dQUt|Xt

dRUt|Xt

(xt, ut)

)
T−1∏
t=0

P (dxt+1|xt, ut)R(dut|xt) (118b)

=

∫
B

(
T−1∏
t=0

dQUt|Xt

dRUt|Xt

(xt, ut)

)
RX0:T×U0:T−1

(dx0:T×du0:T−1) (118c)

where, B is a Borel set belonging to the σ−algebra B (X0:T × U0:T−1). The first equality (118a) follows from the
definition (115), the second equality (118b) by the definition of the Radon-Nikodym derivative [1] and the last one (118c)
from the definition (114). Using (118), we can write the Radon-Nikodym derivative

dQX0:T ×U0:T−1

dRX0:T ×U0:T−1
as follows:

dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1)=

T−1∏
t=0

dQUt|Xt

dRUt|Xt

(xt, ut) . (119)

Using (119), we get the following:

46

D(Q∥P) = EQ

[
log

dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1)

]
= EQ

[
log

T−1∏
t=0

dQUt|Xt

dRUt|Xt

(xt, ut)

]

= EQ

[
T−1∑
t=0

log
dQUt|Xt

dRUt|Xt

(xt, ut)

]
(120)

= EQ

[
T−1∑
t=0

D(QUt|Xt
(·|Xt)∥RUt|Xt

(·|Xt))

]
. (121)

Since the KL divergence D(Q∥R) is equivalent to the expected LLR (117), in this work, the KL divergence is used as a
proxy for the measure of the agent’s deviations from the reference policy.

Minimizing the KL divergence is in fact equivalent to minimizing the detection rate of an attacker for an ergodic
process as proved in [106]. While we do not consider an ergodic process, the use of KL divergence is still well-motivated
by the Bretagnolle–Huber inequality [97]. Let E be an arbitrary set of events that the supervisor will identify the agent as
a deceptive agent, i.e., the agent followed Q. According to the Bretagnolle–Huber inequality, we have

Pr(E|R) + Pr(¬E|Q) ≥ 1

2
exp(−D(Q||R)) (122)

where Pr(E|R) and Pr(¬E|Q) denote the supervisor’s false positive and negative rates, respectively. The false positive
rate is the probability that the supervisor will identify the well-intentioned agent as a deceptive agent, i.e., the agent’s
policy is R, but the supervisor thinks that the agent has followed Q. Similarly, the false negative rate is the probability
that the supervisor will identify the deceptive agent as a well-intentioned agent. The Bretagnolle–Huber inequality (122)
states that the sum of the supervisor’s false positive and negative rates is lower bounded by a decreasing function of the KL
divergence between the distributionsQ andR. Therefore, an agent wanting to increase the supervisor’s false classification
rate should minimize the KL divergence from R to Q.

The goal of the agent is to design a deceptive policyQ that minimizes the expected path cost EQ [C0:T (X0:T , U0:T−1)]
(113) while limiting the KL divergence D (Q∥R) (121). Using (113) and (121), we propose the following KL control
problem for the synthesis of optimal deceptive policies for the agent:

Problem 5 (Synthesis of optimal deceptive policy).

min
{QUt|Xt

}T−1
t=0

EQ

T−1∑
t=0

{
Ct(Xt, Ut) + λD(QUt|Xt

(·|Xt)∥RUt|Xt
(·|Xt))

}
+ EQCT (XT) (123)

where λ is a positive weighting factor that balances the trade-off between the KL divergence and the path cost.

We explain the above KL control problem via the following example:

Example 4. Consider a drone that is contracted by a supervisor to perform a surveillance task over an area. The
supervisor prefers the drone to operate at high speeds (policy R) to improve the efficiency of the surveillance. The
operator of the drone, the agent, on the other hand, prefers the drone to operate in a battery-saving, safe mode (policy
Q) to improve the longevity of the drone. The agent does not want to get detected by the supervisor and fired. Hence, the
goal of the agent is to operate in a way that would balance the energy consumption (EQ [C0:T (X0:T , U0:T−1)]) and the
deviations from the behavior desired by the supervisor (D(Q||R)).

5.5 Synthesis of Optimal Control Policies
In this section, we solve Problem 5 using backward dynamic programming and propose a policy synthesis algorithm based
on path integral control.

47

5.5.1 Backward Dynamic Programming

Notice that the cost function of Problem 5 possesses the time-additive Bellman structure and, therefore, can be solved by
utilizing the principle of dynamic programming [111]. Define for each t ∈ T and xt ∈ Xt, the value function:

Jt(xt) := inf
{QUk|Xk

}T−1
k=t

EQ

T−1∑
k=t

{
Ck(Xk, Uk) + λD(QUk|Xk

(·|Xk)∥RUk|Xk
(·|Xk))

}
+ EQCT (XT).

Notice that in (124), we used “inf” instead of “min” since we do not know if the infimum is attained. In the following
theorem, we show that the infimum is indeed attained, and therefore, “inf” can be replaced by “min”.

Theorem 12. The value function Jt(xt) satisfies the following backward Bellman recursion with the terminal condition
JT (xT) = CT (xT):

Jt(xt) = −λ log

{∫
Ut

exp

(
−Ct(xt, ut)

λ

)
× exp

(
− 1

λ

∫
Xt+1

Jt+1(xt+1)P (dxt+1|xt, ut)

)
R(dut|xt)

}

and the minimizer of Problem 5 is given by

Q∗
Ut|Xt

(BUt
|xt)=

∫
BUt

exp(−ρt(xt, ut)/λ)R(dut|xt)∫
Ut

exp(−ρt(xt, ut)/λ)R(dut|xt)
(124)

where
ρt(xt, ut) :=Ct(xt, ut) +

∫
Xt+1

Jt+1(xt+1)P (dxt+1|xt, ut) (125)

and BUt is a Borel set belonging to the σ−algebra B(Ut).

Proof. By Bellman’s optimality principle, the value function satisfies the following recursive relationship:

Jt(xt)= inf
QUt|Xt

∫
Ut

{
ρt(xt, ut)+λ log

dQ

dR
(ut|xt)

}
Q(dut|xt) (126)

where ρt(xt, ut) is defined by (125). Invoking the Legendre duality between the KL divergence and free energy (see
Appendix 11.2), it can be shown that there exists a minimizerQ∗

Ut|Xt
of the right-hand side of (126), which can be written

as

Q∗
Ut|Xt

(BUt
|xt)=

∫
BUt

exp(−ρt(xt, ut)/λ)R(dut|xt)∫
Ut

exp(−ρt(xt, ut)/λ)R(dut|xt)
(127)

where BUt
is a Borel set belonging to the σ−algebra B(Ut). Using (127), the value of (126) can be computed as

Jt(xt)=−λ log
{∫

Ut

exp

(
−ρt(xt, ut)

λ

)
R(dut|xt)

}
. (128)

Substituting (125) into (128), we obtain the recursive expression (124).

Theorem 12 provides a recursive method to compute the value functions Jt(xt) and optimal control distributions
Q∗

Ut|Xt
backward in time. As one can see, to perform the backward recursions (124) and (124), the function Jt(xt)

must be evaluated everywhere in the continuous domain Xt. Therefore, in practice, an exact implementation of backward
dynamic programming is computationally costly (unless the problem has a special structure, for example, linear state
dynamics and quadratic costs). The computational cost grows quickly with the dimension of the state space of the system,
which is referred to as the curse of dimensionality. In the next section (Section 5.5.2), we show that under the assumption
of the deterministic state transition law, the backward Bellman recursions can be linearized. This allows us to design a
simulator-driven algorithm to compute optimal deceptive actions.

48

5.5.2 Path Integral Solution

In this section, we focus on a special case in which the agent’s dynamics are deterministic and propose a simulator-driven
algorithm to compute the optimal deceptive actions via path integral control.

Assumption 5. The state transition law is governed by a deterministic mapping Ft : Xt × Ut → Xt+1 as

xt+1 = Ft(xt, ut); (129)

that is, P (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1), where δ denotes the Dirac measure.

Remark 6. Note that under Assumption 5, the agent can deviate from the reference policy R only if it is stochastic.
Otherwise, under any deviations from the reference policy, with a positive probability, the supervisor will be sure that the
agent did not follow the reference policy. Therefore, in what follows, we consider the reference policy to be stochastic.
The stochasticity of the reference policy could be to account for the unmodeled elements of the dynamics, to provide
robustness, or to encourage exploration.

Remark 7. Consider a special setting in which the state dynamics Ft(xt, ut) is linear in xt and ut, the reference policy
distribution RUt|Xt

(·|xt) is Gaussian, and the cost functions Ct(·, ·) and CT (·) are quadratic in xt and ut. In such a
setting, it can be shown that the optimal deceptive policy Q∗

Ut|Xt
(·|xt) is also Gaussian and can be analytically computed

by backward Riccati recursions similar to the standard Linear-Quadratic-Regular (LQR) problems. In this work, we con-
sider a broader setting with possibly non-Gaussian reference distribution, non-linear state dynamics, and non-quadratic
cost functions. In this case, the optimal deceptive policy might not be efficiently computed by solving backward recursions.

Now, we propose a path-integral-based solution approach for simulator-driven policy synthesis. Under assumption 5,
we can rewrite (124) as

Jt(xt) = −λ log

{∫
Ut

exp

(
−Ct(xt, ut)

λ

)
× exp

(
−Jt+1 (Ft(xt, ut))

λ

)
R(dut|xt)

}
.

We introduce the exponentiated value function as Zt(xt) := exp
(
− 1

λJt(xt)
)
. Using Zt(xt), the Bellman recursion (130)

can be linearized, and we get the following linear relationship between Zt and Zt+1:

Zt(xt)=

∫
Ut

exp

(
−Ct(xt, ut)

λ

)
Zt+1 (Ft(xt, ut))R(dut|xt)

=

∫
Ut

∫
Xt+1

exp

(
−Ct(xt, ut)

λ

)
Zt+1(xt+1)× P (dxt+1|xt, ut)R(dut|xt). (130)

Note that in (130), P (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1) by Assumption 5. Equation (130) is a linear backward recursion
in Zt. The linear solvability of the KL control problem is well-known in the literature (e.g., [109]). We remark that
linearizability critically relies on Assumption 54. Now, by recursive substitution, (130) can also be written as

Zt(xt) =

∫
Ut

∫
Xt+1

· · ·
∫
UT−1

∫
XT

exp

(
−Ct(xt, ut)

λ

)
× · · · × exp

(
−CT (xT)

λ

)
R(dxt+1:T × dut:T−1|xt).

Thus, by introducing the path cost function

Ct:T (xt:T , ut:T−1) :=

T−1∑
k=t

Ck(xk, uk) + CT (xT), (131)

we obtain

Zt(xt) = ER exp

(
− 1

λ
Ct:T (Xt:T , Ut:T−1)

)
(132)

where the expectation ER(·) is with respect to the probability measure R (114). Equation (132) expresses the exponenti-
ated value function Zt(xt) as the expected path cost under the reference distribution. This suggests a path-integral-based

4We remark that in prior works where the path integral method is used to solve stochastic control problems, a certain assumption (e.g. Eq. (9) in [2])
is made to reinterpret the original problem as a problem of designing the optimal randomized policy for a deterministic transition system.

49

Figure 21: Function Ft(x).

approach to numerically compute Zt(xt). Suppose we generate a collection of N independent samples of system paths
{xt:T (i), ut:T−1(i)}Ni=1 starting from xt under the reference distribution R. Since the reference distribution is known,
a collection of such sample paths can be easily generated using a Monte Carlo simulation. If Ct:T (xt:T (i), ut:T−1(i))
represents the path cost of the sample path i, then by the strong law of large numbers [1] as N →∞, we get

1

N

N∑
i=1

exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
a.s.→ Zt(xt). (133)

Similarly, a collection of sample paths {xt:T (i), ut:T−1(i)}Ni=1 starting from xt under the reference distribution R can
be used to sample ut from the optimal distribution Q∗

Ut|Xt
(·|xt). Notice that the optimal deceptive policy (124) can be

expressed in terms of {Zt}Tt=0 as

Q∗
Ut|Xt

(BUt
|xt) =

1

Zt(xt)

∫
BUt

exp

(
−Ct(xt, ut)

λ

)
× exp

(
−Jt+1 (Ft(xt, ut))

λ

)
R(dut|xt)

=
1

Zt(xt)

∫
BUt

exp

(
−Ct(xt, ut)

λ

)
× Zt+1 (Ft(xt, ut))R(dut|xt) (134a)

=
1

Zt(xt)

∫
BUt

∫
Xt+1

exp

(
−Ct(xt, ut)

λ

)
Zt+1(xt+1)× P (dxt+1|xt, ut)R(dut|xt) (134b)

=
1

Zt(xt)

∫
{Xt+1:T ,Ut:T−1|ut∈BUt}

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
×R(dxt+1:T × dut:T−1|xt). (134c)

The step (134a) follows from the definition ofZt. In (134b), we used our assumptionP (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1).
Finally, (134c) is obtained by the recursive substitution of (134b), and {Xt+1:T , Ut:T−1|ut ∈ BUt

} represents a collection
paths such that ut ∈ BUt

.
We use the above representation of Q∗

Ut|Xt
to sample an action ut from it. Let rt(i) be the exponentiated path cost of

the sample path i:

rt(i) := exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
(135)

and rt :=
∑N

i=1 rt(i). For each t ∈ T , we introduce a piecewise constant, monotonically non-decreasing function
Ft : [0, N]→ [0, rt] by

Ft(x) =

⌊x⌋∑
i=1

rt(i).

where ⌊x⌋ denotes floor(x), i.e., the greatest integer less than or equal to x. The function Ft(x) is represented in Figure
21.

Notice that the inverse F−1
t of Ft defines a mapping F−1

t : [0, rt]→ {1, 2, ..., N}. To generate a sample ut approxi-
mately from the optimal distribution Q∗

Ut|Xt
, we propose Algorithm 2. We first, generate a random variable d according

50

Algorithm 2 Sampling ut approximately from Q∗
Ut|Xt

(·|xt) by Monte Carlo simulations

Require: Initial state x0
1: for t ∈ T do
2: Sample N paths {xt:T (i), ut:T−1(i)}Ni=1 starting from xt under the reference distribution R.
3: For each sample path i, compute the exponentiated path cost rt(i) by (135).
4: Compute rt :=

∑N
i=1 rt(i).

5: Generate a random variable d according to d ∼ unif[0, rt].
6: Select a sample ID by jt ← F−1

t (d).
7: Select a control input as ut ← ut(jt).
8: end for

to d ∼ unif[0, rt]. Then, we select a sample ID by jt ← F−1
t (d). Finally, the control input adopted in the jt-th sample

path at time step t is selected as ut, i.e., ut ← ut(jt). Theorem 13 proves that as the number of Monte Carlo samples
tends to infinity, Algorithm 1 samples ut from the optimal distribution Q∗

Ut|Xt
(·|xt).

Theorem 13. LetBUt
∈ B(Ut) be a Borel set. Suppose for a given collection of sample paths {xt:T (i), ut:T−1(i)}Ni=1, ut

is computed by Algorithm 1 and the probability of ut ∈ BUt
is denoted by Pr{ut ∈ BUt

|{xt:T (i), ut:T−1(i)}Ni=1}. Then,
as N →∞

Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}
a.s.→ Q∗

Ut|Xt
(BUt |xt).

Proof. Let IBUt
be the set of indices of sample paths for which an action in BUt

is taken at time step t, i.e.,

IBUt
= {i ∈ {1, 2, . . . , N}|ut(i) ∈ BUt

}.

Define the sum of the exponentiated path costs of the paths in IBUt
as

rBUt
=

∑
i∈IBUt

rt(i).

By construction of Algorithm 2,

Pr{ut ∈ BUt
|{xt:T (i), ut:T−1(i)}Ni=1} =

rBUt

rt
. (136)

Now, from (133), as N →∞, we get

rt
N

=
1

N

N∑
i=1

exp

(
−Ct:T (xt:T (i), ut:T−1(i))

λ

)
a.s.→ Zt(xt).

Similarly, as N →∞,

rBUt

N
=

1

N

∑
i∈IBUt

exp

(
−Ct:T (xt:T (i), ut:T−1(i))

λ

)
a.s.→
∫
{Xt+1:T , Ut:T−1|ut∈BUt}

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
×R(dxt+1:T , dut:T−1|xt)

Thus, from (134c) and (136)

Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}
a.s.→ 1

Zt(xt)

∫
{Xt+1:T , Ut:T−1|ut∈BUt}

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
×R(dxt+1:T , dut:T−1|xt)

= Q∗
Ut|Xt

(BUt
|xt).

We showed that under Assumption 5, the optimal deceptive policies can be synthesized using path integral control.
Algorithm 2 allows the deceptive agent to numerically compute optimal actions via Monte Carlo simulations without
explicitly synthesizing the policy. Since Monte Carlo simulations can be efficiently parallelized, the agent can generate
the optimal control actions online.

51

0 10 20 30 40 50

-5

0

5

10

0 10 20 30 40 50

-5

0

5

10

(a) Paths under R, Prsafe = 0.04 (b) Paths under Q̂∗ with λ = 3, Prsafe = 0.48

0 10 20 30 40 50

-5

0

5

10

0 10 20 30 40 50

-5

0

5

10

(c) Paths under Q̂∗ with λ = 2, Prsafe = 0.62 (d) Paths under Q̂∗ with λ = 0.5, Prsafe = 0.94

Figure 22: A unicycle navigation problem. The start position is shown by a red dot, and the goal region by a disk colored
in gray. 100 sample paths generated under the reference policy R and the agent’s policy Q̂∗ with three values of λ are
shown. The probability of safe paths Prsafe are noted below each case.

5.6 Simulation Results
In this section, we validate the path-integral-based algorithm proposed to generate optimal deceptive control actions. The
problem is illustrated in Figure 22. A supervisor wants an agent to start from the origin and reach a disk of radius GR

centered at
[
GX GY

]⊤
(shown in gray color) as fast as possible. The supervisor also expects the agent to inspect

the region on the way. To encourage exploration and to provide robustness against unmodeled dynamics, the supervisor
designs a randomized reference policy. The agent, on the other hand, wishes to avoid the regions on the way that are
covered under fire, as shown in Figure 22. Let these regions be represented collectively by X fire. Suppose the agent’s
dynamics are modeled by a unicycle model as:

PX
t+1 = PX

t + St cosΘth, PY
t+1 = PY

t + St sinΘth, St+1 = St +Ath, Θt+1 = Θt +Ωth

where (PX
t , P

Y
t), St, and Θt denote the x − y position, speed, and the heading angle of the agent at time step t, respec-

tively. The control input Ut :=
[
At Ωt

]T
consists of acceleration At and angular speed Ωt. h is the time discretization

parameter used for discretizing the continuous-time unicycle model. For this simulation study, we set h = 1. Note that
the agent’s dynamics is deterministic as per Assumption 5; however, the control input Ut can be stochastic. Suppose the
supervisor designs the reference policy R as a Gaussian probability density with mean ut and covariance Σt:

RUt|Xt
(·|xt) =

exp
[
− 1

2 (ut − ut)
⊤Σ−1

t (ut − ut)
]√

(2π)2|Σt|
.

The mean ut :=
[
at ωt

]⊤
is designed using a proportional controller as

At = −kA(St − Sdesired
t), Ωt = −kΩ(Θt −Θdesired

t)

where kA and kΩ are proportional gains and Sdesired
t , Θdesired

t are computed as

Sdesired
t =

∥∥∥∥[GX

GY

]
−
[
PX
t

PY
t

]∥∥∥∥
T − t

, Θdesired
t =tan−1

(
GY − PY

t

GX − PX
t

)
.

52

Figure 23: Expected LLR (with one standard deviation) with respect to time t for three values of λ.

As mentioned before, the agent wishes to avoid the region X fire. Suppose the cost function C0:T is designed as

C0:T (X0:T , U0:T−1) =

T∑
t=0

1
[PX

t PY
t]⊤∈X fire

where 1
[PX

t PY
t]⊤∈X fire represents an indicator function that returns 1 when the agent is inside the region X fire and 0

otherwise. For this simulation, we set[
GX

GY

]
=

[
45
0

]
, Σt =

[
0.5 0
0 0.5

]
, kA = 0.1, kΩ = 0.2, T = 50.

The agent chooses its action at each time step using Algorithm 2 where the number of samples is N = 105.
Suppose Q̂∗ denotes the deceptive agent’s distribution generated by the sampling-based Algorithm 1. Figure 22 shows

100 paths under the reference distribution R (Figure 22(a)) and the agent’s distribution Q̂∗ for three values of λ (Figure
22(b) - 22(d)). A lower value of λ implies that the agent cares less about its deviation from the reference policy and more
about avoiding the region X fire. A higher value of λ implies the opposite. We also report Prsafe, the percentage of paths
that avoid X fire. Under the reference distribution R, only 4% of the paths are safe. On the other hand, more paths are safe
under the agent’s distribution Q̂∗, and as the value of λ reduces, Prsafe increases.

Figure 23 shows the expected log-likelihood ratio (with one standard deviation) with respect to time t for three values
of λ. The expected LLR is computed as follows. Algorithm 2 selects a control input uk ← uk(jk) at time step k, where
jk is a sample ID obtained from step 5. From the construction of the algorithm, at each time step k, the probability of
choosing the control input uk ← uk(jk) under the agent’s distribution Q̂∗ is rk(jk)/rk, where rk(jk) and rk are computed
by steps 3 and 4 of Algorithm 2. Whereas the probability of choosing the control input uk ← uk(jk) under the reference
distribution is 1/N . Therefore, using (120), the expected LLR upto time t ∈ T can be approximately computed as

EQ∗

[
log

dQ∗
X0:t×U0:t−1

dRX0:t×U0:t−1

(x0:t, u0:t−1)

]
= EQ∗

[
t−1∑
k=0

log
dQ∗

Uk|Xk

dRUk|Xk

(xk, uk)

]
≈ 1

NQ̂∗

NQ̂∗∑
i=1

t−1∑
k=0

rk(jk)/rk
1/N

.

where NQ̂∗ is the number of paths generated by repeatedly running Algorithm 2. Note that since we assume the system
dynamics to be deterministic (Assumption 5), once the control input uk is chosen at time step k, the state xk+1 is uniquely
determined. Therefore, while computing the expected LLR, we only need to consider the probabilities of choosing the
control input uk under policies Q̂∗ and R. Figure 23 shows that for a lower value of λ, the expected LLR is higher, i.e.,
more deviation of Q̂∗ from R.

5.7 Publications
• A. Patil, M. Karabag, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control via Path Integral Approach,”

2023 IEEE Conference on Decision and Control (CDC)

5.8 Future Work
For future work, we plan to study the deception problem for continuous-time stochastic systems. We also plan to conduct
the sample complexity analysis of the path integral approach to solve KL control problems.

53

Adversary

Controlled system

= (+) +

Detector

Controller

+

Figure 24: Attacker vs controller/detector.

6 Detection and Risk Mitigation of Stealthy Attack
In the remaining 6 months of the PhD program, we propose to solve another class of SOC problem using path integral
approach, namely “Detection and Risk Mitigation of Stealthy Attack”. This work would be an extension of our work
in deceptive control for discrete-time stochastic systems presented in Section 5 and the two-player zero-sum stochastic
differential game presented in Section 3.

Consider a system shown in Figure 24 following nonlinear dynamics with state x(t) ∈ Rn, 0 ≤ t ≤ T :

dx(t) = f (x(t)) dt+G (x(t))u(x(t))dt+H (x(t), t) dv(t), x(0) = x0 (137a)
dv(t) = θ(t)dt+ dw(t). (137b)

There are two players competing on this state space model. The first input u(t) ∈ Rℓ, 0 ≤ t ≤ T is determined by
the controller who adopts a state feedback policy (i.e., u(·) is measurable with respect to the σ-algebra generated by
x(s), 0 ≤ s ≤ t). The second input θ(t) ∈ Rm, 0 ≤ t ≤ T is determined by the adversary who also adopts a state
feedback policy (i.e., θ(·) measurable with respect to the σ-algebra generated by x(s), 0 ≤ s ≤ t). The noise process
w(t), 0 ≤ t ≤ T is an m-dimensional standard Brownian motion. Assume that the adversary injects an attack signal θ(t)
in the system and the controller is able to observe v(t) (but not θ(t)) to detect the presence of the attack signal. When the
attack signal is absent, the system input v(t) is equal to the standard Brownian motion w(t). That is,

dv(t) = dw(t) (No attack)
dv(t) = θ(t)dt+ dw(t) (Under attack).

Attack detection can be performed by monitoring the statistical deviation of v(t) from the standard Brownian motion.
For example, prior works [106, 105, 112, 113] suggested to use the KL divergence D(P∥Q), where P is the probability
measure in which w(t) is the standard Brownian motion and Q is the measure in which v(t) is the Brownian motion.
Adopting D(P∥Q) as the stealthiness measure, the adversary is incentivized to keep D(P∥Q) small.

6.1 Worst-Case Attack Synthesis
We define the following problem as the attacker’s problem to synthesize worst-case attack

max
θ(·)

EP

[∫ T

0

C(x(t), u(t))dt+ C(x(T))

]
(138)

s.t. D(P∥Q) ≤ ϵ

We construct a dual of the optimal control problem (138), show that strong duality holds and establish an equivalence
between the “hard-constrained” problem (138) and the “soft-constrained” problem:

max
θ(·)

EP

[∫ T

0

C(x(t), u(t))dt+ C(x(T))

]
− λD(P∥Q) (139)

where λ ≥ 0 is a fixed constant. We show that the path integral method is applicable to solve the continuous-time KL-
control problem (139). Specifically, if the attacker has a simulator engine that can generate a large number of sample

54

trajectories {x(t)i}Ni=1 from the distribution Q starting from the current state-time pair (x, t), then the optimal attack
signal θ(t) can be computed directly from the sample ensemble {x(t)i}Ni=1.

6.2 Attack risk mitigation
In this section, we turn our attention to the system operator’s problem, who is interested in mitigating the risk of stealthy
attacks. We consider the scenario shown in Figure 24 where the system operator is now able to apply a control input u(t)
to combat with the potential attack input θ(t). We assume the existence of an attack detector, who tests the hypothesis
H0 (no attack in progress) against the alternative H1 (attack in progress) based on the observed input 0 ≤ v(t) ≤ T .
We assume the Neyman-Pearson test based on the likelihood ratio dP

dQ is adopted. We model the competition between
the operator and the attacker as a minimax game in which the operator acts as the minimizer and the attacker acts as the
maximize. The problem we consider in this section is

min
u(·)

max
θ(·)

EP

[∫ T

0

C(x(t), u(t))dt+ C(x(T))

]
− λD(P∥Q) (140)

The KL divergence term D(P∥Q), which does not depend on the minimizer’s policy, serves as the stealthiness measure
of the attacker’s policy.

6.3 Experimental Results
In this research, we will perform an extensive series of simulation studies using the Isaac Sim simulator, a powerful tool
widely used for testing robotic algorithms in virtual environments. Isaac Sim allows for high-fidelity simulation of various
robotic platforms, enabling us to rigorously evaluate the performance of the proposed control strategies in a controlled and
repeatable manner. Through these simulations, we aim to validate the effectiveness of our path integral control framework
in detecting and mitigating the stealthy attacks.

In addition to the simulated experiments, we plan to conduct real-world tests to further demonstrate the practical
applicability of our approach. These tests will be performed on physical robotic platforms, such as the Qbot mobile
robot developed by Quanser and the quadruped robot, Spot, developed by Boston Dynamics. The Qbot will allow us to
explore scenarios involving ground-based navigation and obstacle avoidance, while Spot will be used for more advanced
experiments involving dynamic locomotion and real-time adaptation to unpredictable environments.

By combining simulation studies with real-world experiments, we aim to provide comprehensive evidence of the
robustness and adaptability of the proposed control strategies, ensuring their viability for deployment in real-world au-
tonomous systems.

7 Discrete-Time Stochastic LQR via Path Integral Control and Its Sample
Complexity Analysis

7.1 Motivation and Literature Review
We presented five application domains of path integral control approach. Although the path integral method is conve-
nient for a broad class of stochastic optimal control problems, the outcomes of Monte-Carlo simulations are inherently
probabilistic; therefore, applying path integral methods to safety-critical missions would require rigorous performance
guarantees. The purpose of this section is to introduce a theoretical framework for sample complexity analysis that allows
us to understand the interplay between the achievable control performance by the path integral method and the required
computational cost.

Despite the wide applicability of path integral control, not enough work has been done on its sample complexity
analysis. To the best of the authors’ knowledge, the only prior work addressing this problem is the work by Yoon et al.
[66]. The authors of [66] considered the continuous-time path integral control, and applied Chebyshev and Hoeffding
inequalities to relate the instantaneous (pointwise-in-time) error bound in control input and the sample size of the Monte-
Carlo simulations performed at that particular time instance. While this result sheds light on the sample complexity
analysis, the work [66] is limited in the following aspects. First, the effect of time discretization is not addressed. Since
numerical implementations of path integral methods necessitate time discretization, and the control performance depends
on the discretization step sizes, such an analysis is not negligible. Second, it is not clear how the pointwise-in-time bound

55

in [66] can be translated into a more explicit, end-to-end (trajectory-level) error bound. Third, [66] does not provide
machinery to compute the required sample size to achieve an acceptable loss of control performance. Such an analysis is
crucial for safety-critical applications.

7.2 Contributions
We make the following contributions to this work:

1. Derivation of a path integral formulation for discrete-time stochastic Linear Quadratic Regulator (LQR) problem:
Recognizing the difficulties in answering the above questions in the continuous-time setting, we take a step back and
study the sample complexity of path integral in the discrete-time setting. We develop a discrete-time counterpart
of the path integral control scheme for the stochastic LQR problems. Since a formulation of path integral control
for discrete-time LQR has not been provided explicitly in the literature (note, however, a recent work [114]), we
decided to derive it based on a more general setup of the so-called Kullback-Leibler (KL) control problem and using
its intimate connection with path integral control [34, 115].

2. Derivation of an end-to-end (trajectory-level) bound on the error in the control signals: There is often a need to
assess the safety of the control policy across the entire time horizon. Notably, the end-to-end error bound in the
control signals is challenging to evaluate because it couples states across the time horizon as a whole. In this work,
we provide the end-to-end bound on the error between the optimal control signal (computed by the classical Riccati
solution) and the one obtained by the path integral method as a function of sample sizes. Our sample complexity
analysis reveals that the required number of samples for path integral control depends only logarithmically on the
dimension of the control input.

3. Formulation of a chance-constrained optimization problem to quantify the worst-case performance of the path
integral LQR control: We provide a method to quantify the worst-case control performance by formulating a chance-
constrained LQR problem for an adversarial agent. This result, together with (2), will allow us to relate the sample
size and the worst-case control performance of the path integral method.

The main purpose of our study is to establish a theoretical foundation for the sample complexity of the path integral
method. While the path integral method is particularly powerful in nonlinear settings, in this work, we have chosen
the LQR setup since the availability of an analytical expression of the optimal control law allows for quantitative error
analysis. The results presented in this work will be the necessary first step for future study on the sample complexity of
the path integral method for nonlinear systems.

Notations
We use the same notations as described in Section 5.

7.3 KL Control via Path Integral
In this section, we introduce a class of discrete-time continuous-state KL control problems similar to Section 5.4 and
present the path-integral-based solution approach. Let Xt ⊆ Rn and Ut ⊆ Rm be the spaces of states and control inputs at
time step t, respectively. Suppose the state transition is governed by the mapping xt+1 = Ft(xt, ut), Ft : Xt×Ut → Xt+1

for each t ∈ T := {0, 1, · · · , T} with a given initial state X0 = x0. Notice that we assume the state transition law is
deterministic and can also be written as PXt+1|Xt,Ut

(dxt+1|xt, ut) = δFt(xt,ut)(dxt+1) where δ is the Dirac measure.
In contrast, the control policy to be designed is allowed to be randomized and is represented by a sequence of stochastic
kernels [116] QUt|Xt

, t ∈ T . A sequence of stochastic kernels RUt|Xt
, t ∈ T represents a nominal (reference) policy

which is given in advance. We denote the joint probability distributions of the state-control trajectories induced by the
policies R and Q as Equations (114) and (115) respectively. Let the functions Ct(·, ·) : Xt × Ut → R for t ∈ T and
CT (·) : XT → R represent the stage-wise and the terminal cost functions, respectively and the path cost can be written as
(131). Introducing a positive weighing factor λ, the KL control problem is formulated as:

Problem 6 (KL control problem).

min
{QUt|Xt

}T−1
t=0

Ex0

Q C0:T (X0:T , U0:T−1) + λD(QX0:T ,U0:T−1
∥RX0:T ,U0:T−1

). (141)

56

The expectation Ex0

Q (·) is with respect to the probability measure (115) with a fixed initial state x0. λ is a positive con-
stant that balances a trade-off between the path costC0:T (X0:T , U0:T−1) and the KL divergenceD(QX0:T ,U0:T−1

∥RX0:T ,U0:T−1
).

Define the value function for Problem 6 by

Jt(xt) := min
{QUk|Xk

}T−1
k=t

Ext

Q Ct:T (Xt:T , Ut:T−1) + λD(QXt:T ,Ut:T−1
∥RXt:T ,Ut:T−1

).

Here, Ext

Q denotes the expectation with respect to the measure QXt:T ,Ut:T−1
induced by the policy {QUk|Xk

}T−1
k=t and

the state transition law xk+1 = Fk(xk, uk), k = t, · · ·T − 1 with a fixed initial state xt. The expectation Ext

R with
respect to the measure RXt:T ,Ut:T−1

is defined similarly. The next theorem provides an explicit representation of the value
function, which plays a central role in the path integral control algorithm. This result can be thought of as a discrete-time
counterpart of the Feynmann-Kac lemma used in [2] in the derivation of continuous-time path integral control.

Theorem 14. For each t ∈ T , the value function admits a representation

Jt(xt) = −λ logExt

R exp

(
− 1

λ
Ct:T (Xt:T , Ut:T−1)

)
. (142)

The optimal policy Q∗
Ut|Xt

for Problem 6 is expressed as (124).

Proof. The proof follows similar to the proof of Theorem 12.

Equation (142) implies that the value function Jt(xt) can be computed approximately using independent Monte-Carlo
simulations of state-control trajectories starting from xt under the reference policy {RUk|Xk

}T−1
k=t . Let {xt:T (i), ut:T−1(i)}ni=1

be an ensemble of n such sample state-control trajectories. For each i, let

r(i) := exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
(143)

be the reward of the sample path i. Then, Jt(xt) can be evaluated approximately by Jt(xt) ≈ −λ log
(
1
n

∑n
i=1 r(i)

)
.

Moreover, the expectation of the control input under the optimal distribution Q∗
Ut|Xt

(124) can also be evaluated as

EQ∗(Ut|xt) =
∫
Ut

utQ
∗(dut|xt)

=
ER

[
Ut exp

(
− 1

λCt:T (Xt:T , Ut:T−1)
)]

ER

[
exp

(
− 1

λCt:T (Xt:T , Ut:T−1)
)]

≈
∑n

i=1 ut(i)r(i)∑n
i=1 r(i)

. (144)

7.4 Stochastic LQR via Path Integral
In this section, we obtain the path integral algorithm for discrete-time stochastic LQR as a special case of the discrete-time,
continuous-state KL control problem presented in Section 5.4. Suppose for each t ∈ T , the state transition is governed by
the following linear difference equation

Xt+1 = AtXt +BtUt +Wt (145)

where Xt ∈ Rn, Ut ∈ Rm and Wt ∼ N (0,Ωt), t ∈ T are mutually independent Gaussian random variables. We assume
that the initial state X0 = x0 is given. Now we state the stochastic LQR problem as follows:

Problem 7 (Stochastic LQR). Compute the state feedback policy ut = kt(xt) that solves the following optimal control
problem:

min
{kt(·)}T−1

t=0

E
T−1∑
t=0

(
1

2
X⊤

tMtXt+
1

2
U⊤
tNtUt

)
+E
(
1

2
X⊤

TMTXT

)
s.t. Xt+1=AtXt+BtUt+Wt, X0 = x0 (146)

where {Mt}Tt=0 and {Nt}T−1
t=0 are sequences of positive definite matrices.

57

7.4.1 Classical solution

It is well-known that the optimal policy is given by

ut = kt(xt) = Ktxt, (147a)

Kt = −(B⊤
t Θt+1Bt +Nt)

−1B⊤
t Θt+1At (147b)

where {Θt}Tt=0 is a sequence of positive definite matrices computed by the backward Riccati recursion with ΘT =MT :

Θt =A
⊤
t Θt+1At +Mt −A⊤

t Θt+1Bt(B
⊤
t Θt+1Bt +Nt)

−1B⊤
t Θt+1At. (148)

7.4.2 Path-integral-based solution

We now recover the classical result in Section 7.4.1 using the KL control framework described in Section 5.4. It turns out
that Problem 2 can be related to Problem 1 under the following assumption:

Assumption 6. For each t = 0, 1, · · · , T − 1, there exists a positive definite matrix Ω̂t and λ > 0 such that

Nt = λΩ̂−1
t and BtΩ̂tB

⊤
t = Ωt. (149)

This assumption implies that the control input in the direction with higher noise variance is cheaper than that in the
direction with lower noise variance. In order to satisfy this assumption the noise Wt has to enter the dynamics via the
control channel. While Assumption 6 is somewhat restrictive, it is a common assumption in the path integral control
literature. See, e.g., [2] for its system theoretic interpretation. Its relaxations have been studied in the literature (e.g.,
[36]). For simplicity, we accept Assumption 1 in what follows.

Consider the KL control problem in which the state transition law is given by xt+1 = Ft(xt, ut) where

Ft(xt, ut) = Atxt +Btut ∀t = 0, 1, · · · , T − 1. (150)

Suppose that the reference policy RUt|Xt
is given as a non-degenerate zero-mean Gaussian probability density function

with covariance Ω̂t, i.e.,
RUt|Xt

(ut|xt) = N (0, Ω̂t). (151)

Finally, suppose that the stage-wise and terminal cost functions are given by

Ct(xt, ut) =
1

2
x⊤t Mtxt, ∀t = 0, 1, · · · , T − 1 (152)

CT (xT) =
1

2
x⊤TMTxT . (153)

Under this setup, Theorem 14 leads to the following result:

Theorem 15. The KL control problem defined by (149) through (153) admits the optimal policy Q∗
Ut|Xt

given by

Q∗
Ut|Xt

(ut|xt) = N (−Ĥ−1
t Ĝ⊤

t xt, λĤ
−1
t) (154)

where Ĝt = A⊤
t Θ̂t+1Bt and Ĥt = B⊤

t Θ̂t+1Bt + λΩ̂−1
t and Θ̂t is the solution of the Riccati difference equation

Θ̂t = A⊤
t Θ̂t+1At +Mt −A⊤

t Θ̂t+1Bt(B
⊤
t Θ̂t+1Bt+λΩ̂

−1
t)−1B⊤

t Θ̂t+1At (155)

with Θ̂T =MT .

Proof. Suppose the value function Jt(xt) takes the form Jt(xt) =
1
2x

⊤
t Θ̂txt + κ̂t, where Θ̂T =MT and κ̂T = 0. Define

Zt(xt) := exp
(
− 1

λJt(xt)
)
. Now, from (124), the optimal policy is given by

Q∗
Ut|Xt

(ut|xt) =
1

Zt(xt)
exp

(
−Ct(xt, ut)

λ

)
× Zt+1 (Ft(xt, ut))R(ut|xt). (156)

58

Introducing F̂t = A⊤
t Θ̂t+1At +Mt, Ĝt = A⊤

t Θ̂t+1Bt and Ĥt = B⊤
t Θ̂t+1Bt + λΩ̂−1

t and using the reference policy
(151), equation (156) can be written as

Q∗
Ut|Xt

(ut|xt) =
1

Zt(xt)

1√
(2π)m det Ω̂t

× exp

(
1

2λ
x⊤t (ĜtĤ

−1
t Ĝ⊤

t − F̂t)xt −
1

λ
κ̂t+1

)

× exp

(
− 1

2λ
(ut + Ĥ−1

t Ĝ⊤
t xt)

⊤Ĥt(ut + Ĥ−1
t Ĝ⊤

t xt)

)
.

or (154) for short. From the condition
∫
Ut
Q∗

Ut|Xt
(ut|xt)dut = 1, Zt(xt) is determined as

Zt(xt)=

√√√√det
(
λĤ−1

t

)
det Ω̂t

exp

(
x⊤t (ĜtĤ

−1
t Ĝ⊤

t − F̂t)xt
2λ

− κ̂t+1

λ

)
.

Therefore, the value function is written as

Jt(xt) = −λ logZt(xt) =
1

2
x⊤t Θ̂txt + κ̂t

where Θ̂t is defined by (155) and κ̂t by

κ̂t=
λ

2
log det Ω̂t+

λ

2
log det

(̂
Ω−1

t +
1

λ
B⊤

t Θ̂t+1Bt

)
+ κ̂t+1.

Critically, observe that Riccati equations (148) and (155) coincide under Assumption 6. Moreover, the mean of the
control input under the optimal policy (154) is

EQ∗(ut|xt) = −Ĥ−1
t Ĝ⊤

t xt = Ktxt, (157)

which coincides with the LQR solution (147). Since (144) provides us with a Monte-Carlo-based approach to compute
EQ∗(ut|xt), this connection implies that the optimal LQR input (147) can be computed by Monte-Carlo simulations.
Specifically, at each time step t, we generate sample state-control trajectories {xt:T (i), ut:T−1(i)}ni=1 under the reference
policy RUk|Xk

. Since the reference policy is currently given by (151), from Assumption 6, this amounts to performing n
independent simulations of the “uncontrolled” dynamics Xk+1 = AkXk +Wk, Wk ∼ N (0,Ωk) for k = t, · · · , T − 1
with the initial state Xt = xt. The path reward r(i) is computed for each sample path using (143). Finally, the optimal
control input for stochastic LQR is determined by

ut ≈
∑n

i=1 r(i)ut(i)∑n
i=1 r(i)

. (158)

Equation (158) is the discrete-time counterpart of the path integral control scheme introduced in the original work [2]. No-
tice that the path-integral-based LQR implementation using (158) does not require solving the backward Riccati equation
(147).

7.5 Sample Complexity Analysis
Suppose ut = Ktxt represents the optimal control input computed by solving the classical Riccati equation (148) and ût
represents the control input obtained via path integral approach using a finite number of samples nt ∈ N, i.e.,

ût =

nt∑
i=1

r(i)

r
ut(i) where r =

nt∑
i=1

r(i). (159)

59

7.5.1 Sample Complexity Bound

By the strong law of large numbers, ût
a.s.→ ut, as nt → ∞. In this section, we analyze the finite sample performance of

this approximation. Define the empirical means Ê and true expectations E as

Êru
t :=

1

nt

nt∑
i=1

r(i)ut(i), Êr
t :=

1

nt

nt∑
i=1

r(i), Eru
t := lim

nt→∞

1

nt

nt∑
i=1

r(i)ut(i), Er
t := lim

nt→∞

1

nt

nt∑
i=1

r(i). (160)

Since r(i) ∈ [0, 1], by Hoeffding’s inequality [117], we get

Pr
(∣∣∣Êr

t − Er
t

∣∣∣ ≤ γ1) ≥ 1− 2e−2ntγ
2
1 . (161)

We know that ut(i) is sampled from RUt|Xt
in (151) which is a zero-mean Gaussian distribution with covariance Ω̂t.

Therefore, ut(i) ∈ SG(∥Ω̂t∥), where SG(∥Ω̂t∥) represents a class of sub-Gaussian distributions with parameter ∥Ω̂t∥.
Since r(i) ∈ [0, 1], we also have (r(i)ut(i)) ∈ SG(∥Ω̂t∥). Using Hoeffding’s bound for sub-Gaussians and the union
bound [118], we get

Pr
(∥∥∥Êru

t − Eru
t

∥∥∥
∞
≤ γ2

)
≥ 1− 2me−ntγ

2
2/(2∥Ω̂t∥) (162)

where m is the dimension of ut(i). The following theorem provides an end-to-end sample complexity bound on the error
in the path integral control signal.

Theorem 16. Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of positive numbers and

ϵ :=
∑T−1

t=0
ϵ2t , α :=

∑T−1

t=0
αt, β :=

∑T−1

t=0
βt.

Suppose α+ β < 1. If ût is computed by (159) with nt satisfying

nt≥

(
Êr

t

√
2∥Ω̂t∥ log 2m

βt
+
(
ϵtÊ

r
t+∥Êru

t ∥∞
)√

1
2 log

2
αt

)2
ϵ2t (Ê

r
t)

4
(163)

and

Êr
t >

√
1

2nt
log

2

αt
(164)

for all t = 0, 1, . . . , T − 1, then

∥û− u∥2∞ :=

T−1∑
t=0

∥ût − ut∥2∞ ≤ ϵ (165)

with probability greater than or equal to 1− α− β.

Proof. Using the definitions in (160), we have

∥ut − ût∥∞ =∥Eru
t /Er

t − Êru
t /Êr

t ∥∞

=
1

Er
t Ê

r
t

∥∥∥Eru
t Êr

t − Êru
t Êr

t + Êru
t Êr

t − Êru
t Er

∥∥∥
∞

≤ 1

Er
t Ê

r
t

(
∥Eru

t Êr
t − Êru

t Êr
t ∥∞ + ∥Êru

t Êr
t − Êru

t Er∥∞
)
. (166)

The absolute value in the denominator is removed since r(i) ∈ (0, 1]. Given αt and nt, choose γ1 =
√

1
2nt

log 2
αt

. Then
(161) implies that ∣∣∣Êr

t − Er
t

∣∣∣ ≤√ 1

2nt
log

2

αt
(167)

60

holds with probability at least 1− αt. Combining with (164), we have

0 < Êr
t −

√
1

2nt
log

2

αt
≤ Er

t . (168)

Similarly, choosing γ2 =
√

2∥Ω̂t∥
nt

log 2m
βt

, (162) implies that

∥∥∥Êru
t − Eru

t

∥∥∥
∞
≤

√
2∥Ω̂t∥
nt

log
2m

βt
(169)

holds with probability at least 1− βt. Applying (167), (168) and (169) to (166), and using union bound, we obtain that

∥ut − ût∥∞ ≤
Êr

t

√
2∥Ω̂t∥
nt

log 2m
βt

+ ∥Êru
t ∥∞

√
1

2nt
log 2

αt(
Êr

t −
√

1
2nt

log 2
αt

)
Êr

t

(170)

with probability at least 1− αt − βt. Hence we have

Pr
(
∥ut − ût∥2∞ ≤ ϵ2t

)
≥ 1− αt − βt (171)

if the right hand side of (170) is less than or equal to ϵt. Solving this condition for nt, we get (163). Therefore, we
conclude that if nt satisfies (163) and (164), we obtain (171). Using the union bound on (171), we get the desired results.

Remark 8. The sample complexity in (163) reveals that the required number of samples for path integral control depends
only logarithmically on the dimension m.

7.5.2 Upper Bound on the Control Performance

Often in practice, we are interested in an upper bound on the performance loss of the control system. To obtain such a
bound, we now analyze the impact of ∥û− u∥∞ on the control performance.

Let Ût be the “noisy” control input determined by the path integral controller. The closed-loop dynamics is

Xt+1 = AtXt +BtÛt +Wt, Wt ∼ N (0,Ωt) (172)

and the accrued LQR cost is

L :=E

[
T−1∑
t=0

(
1

2
X⊤

tMtXt+
1

2
Û⊤
tNtÛt

)
+
1

2
X⊤

TMTXT

]
. (173)

Introducing Vt := Ût − Ut, (172) can be rewritten as

Xt+1 = ÃtXt +BtVt +Wt, Wt ∼ N (0,Ωt) (174)

where we introduced Ãt := At +BtKt. Also, (173) can be written in terms of Vt as

L = E
T−1∑
t=0

(
1

2
X⊤

t M̃tXt+X
⊤
t ÑtVt +

1

2
V ⊤
t NtVt

)
+ E

[
1

2
X⊤

T MTXT

]
where M̃t := Mt + K⊤

t NtKt and Ñt := K⊤
t Nt. From Theorem 16, we know that if nt satisfies (163) and (164) then∑T−1

t=0 ∥vt∥2∞ ≤ ϵ with probability at least 1 − α − β. Now we formulate the problem to search for the state feedback
policy vt = πt(xt) that maximizes L while satisfying

∑T−1
t=0 ∥vt∥2∞ ≤ ϵ with probability at least 1−α−β. The problem

is formulated as the following chance-constrained optimization problem.

Problem 8 (Chance-constrained LQR).

max
{πt(·)}T−1

t=0

E
T−1∑
t=0

(
1

2
X⊤

t M̃tXt+X
⊤
t ÑtVt +

1

2
V ⊤
t NtVt

)
+ E

[
1

2
X⊤

T MTXT

]
(175)

s.t. Xt+1 = ÃtXt +BtVt +Wt, Wt ∼ N (0,Ωt)

Pr
(∑T−1

t=0
∥vt∥2∞ ≤ ϵ

)
≥ 1− α− β.

61

Let f∗ be the value of the optimization problem 8. Then, if nt satisfies (163) and (164), L ≤ f∗. Finding a worst-
case policy πt that solves the Problem 8 involving a chance constraint on the control input of the systems is inherently
challenging. Some approaches have been proposed in the literature to solve the optimization problems with a chance
constraint on the state of the system [41, 119]. Finding the solution to Problem 8 is left as a topic for future work.

7.6 Simulation Results

Consider an LQR problem where At =

[
0.9 −0.1
−0.1 0.8

]
, Bt =

[
1
0

]
, Ωt =

[
4 0
0 0

]
, Mt = 0.1I , Nt = 10. I represents

an identity matrix of size 2× 2. In figure 25, we plot the state and control input trajectories for two values of n. The red
dashed lines represent the analytical solution obtained by the classical Riccati equation. The blue solid lines represent the
solution obtained by path integral. As evident from the figure, as n is increased, the trajectories obtained by path integral
become less noisy and align well with the analytical LQR solution. We also plot in figures 25(b) and 25(d) the bounds
ut ± ϵt. As one can see the error ϵt reduces as n is increased. Figure 26(a) represents how ϵ0 changes with the sample

0 10 20 30
-3

-2

-1

0

PI
Analytical

(a) State trajectory with n = 103 (b) Control input trajectory with n = 103

0 10 20 30
-3

-2

-1

0

PI
Analytical

0 10 20 30

0

0.05

0.1

(c) State trajectory with n = 107 (d) Control input trajectory with n = 107

Figure 25: State and input trajectories for two values of n. The red dashed line represents the solution obtained by the
Riccati equation, whereas the blue solid line represents the solution obtained by path integral control. The bounds ut ± ϵt
are plotted in (b) and (d).

size. Figure 26(b) represents the LQR costs obtained by the classical Riccati equation (red dotted line) and by the path
integral approach (blue solid line) as functions of the sample size. Notice that the path integral solution converges to the
analytical solution as the sample size is increased.

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

200

400

600

800
PI
Analytical

(a) ϵ0 vs sample size (b) LQR costs vs sample size

Figure 26: ϵ0 and LQR cost vs sample size

62

7.7 Publications
• A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample

Complexity Analysis,” IEEE Control Systems Letters (L-CSS)

• A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample
Complexity Analysis,” 2024 IEEE Conference on Decision and Control (CDC)

7.8 Future Work
Future work will build upon the foundation presented in this proposal to carry out sample complexity analysis of path
integral for nonlinear continuous-time stochastic control problems. Another direction we would like to work on is to
“robustify” the path integral control method by exploiting techniques from H∞ control.

8 Proposed Dissertation Chapters and Timeline
This section introduces the dissertation chapters. Table. 1 shows a timeline of proposed tasks in red and writing in blue.

Chapter 1: Introduction
This chapter first describes the motivation of the dissertation and then introduces the basics of stochastic optimal control
problems and path integral control.

Chapter 2: Continous-Time Chance-Constrained Stochastic Optimal Control
This chapter focuses on a continuous-time chance-constrained SOC problem, leveraging the path integral method to
numerically solve the problem using open-loop samples of system trajectories. The proposed contributions include for-
mulating the problem through stochastic calculus, proving strong duality between the primal and dual problems, and
developing a novel dual ascent algorithm for real-time control, with simulation results in robot motion planning.

Chapter 3: Two-Player Zero-Sum Stochastic Differential Game
This chapter addresses two-player zero-sum stochastic differential games, where players make decisions in the presence
of uncertainties, aiming to minimize their failure probabilities and control costs. A risk-minimizing approach is proposed,
where the game is solved through a Hamilton-Jacobi-Isaacs partial differential equation with Dirichlet boundary condi-
tions. The path integral control method is employed to solve this problem online, with no need for precomputation, and
validated through examples like pursuit-evasion games and disturbance attenuation problems.

Chapter 4: Deceptive Control
This chapter addresses a deception problem between a supervisor and an agent, where the agent deviates from the super-
visor’s reference policy to achieve its own goal while minimizing the supervisor’s detection. Using hypothesis testing and
KL divergence minimization, the agent’s optimal deceptive policy is synthesized through path integral control, allowing
for efficient online computation using Monte Carlo simulations.

Chapter 5: Task Hierarchical Control
Robotic systems with many degrees of freedom often require hierarchical control to manage multiple tasks with different
priorities. This chapter integrates the null-space projection technique with the path integral control method, combining the
computational efficiency of local controllers with the optimal control capabilities of the path integral approach, enabling
real-time task prioritization in complex, multi-task robotic systems.

63

Dissertation Dec’24 Jan’25 Feb’25 Mar’25 Apr’25 May’25
Chapter 1 Writing
Chapter 2 Writing
Chapter 3 Writing
Chapter 4 Writing
Chapter 5 Writing
Chapter 6 Task 6.1 Task 6.2 Task 6.3 Task 6.3 Writing
Chapter 7 Writing

Table 1: 6-Month Timeline of Dissertation Completion

Chapter 6: Detection and Risk Mitigation of Stealthy Attack
The focus of this chapter will be on solving the “Detection and Risk Mitigation of Stealthy Attack” problem using the
path integral approach, extending our prior work on deceptive control and two-player zero-sum games. The proposed
framework will model the interaction between a system operator and an attacker, optimizing both attack detection and
risk mitigation strategies by solving KL control problems. We also plan to conduct simulation studies using the simulator
Isaac Sim and real-world experiments on a Qbot mobile robot and a quadruped robot, Spot.

Chapter 7: Sample Complexity Analysis of Path Integral Controller
This chapter introduces a theoretical framework for analyzing the sample complexity of the path integral control method,
focusing on discrete-time stochastic LQR problems. The contributions include deriving a discrete-time path integral
formulation, establishing an end-to-end error bound for control signals based on sample sizes, and formulating a chance-
constrained optimization problem to assess the worst-case control performance, laying the groundwork for future analysis
in nonlinear systems.

9 Publications
This section includes all the publications from my PhD studies.

9.1 Journal Publications
• A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample

Complexity Analysis,” IEEE Control Systems Letters (L-CSS)

• A. Patil, A. Duarte, F. Bisetti, T. Tanaka, “Strong Duality and Dual Ascent Approach to Continuous-Time Chance-
Constrained Stochastic Optimal Control,” submitted to Transactions on Automatic Control

• M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in Ob-
structed Environments,” under preparation

9.2 Conference Publications
• A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample

Complexity Analysis,” 2024 IEEE Conference on Decision and Control (CDC)

• A. Patil*, M. Karabag*, U. Topcu, T. Tanaka, “Simulation-Driven Deceptive Control via Path Integral Approach,”
2023 IEEE Conference on Decision and Control (CDC)

• A. Patil, Y. Zhou, D. Fridovich-Keil, T. Tanaka, “Risk-Minimizing Two-Player Zero-Sum Stochastic Differential
Game via Path Integral Control,” 2023 IEEE Conference on Decision and Control (CDC)

• A. Patil, T. Tanaka, “Upper and Lower Bounds for End-to-End Risks in Stochastic Robot Navigation,” 2023 IFAC
World Congress

64

• A. Patil, A. Duarte, A. Smith, F. Bisetti, T. Tanaka, “Chance-Constrained Stochastic Optimal Control via Path
Integral and Finite Difference Methods,” 2022 IEEE Conference on Decision and Control (CDC)

• A. Patil, T. Tanaka, “Upper Bounds for Continuous-Time End-to-End Risks in Stochastic Robot Navigation,” 2022
European Control Conference (ECC)

• A. Patil, R. Funada, T. Tanaka, L. Sentis, “Task Hierarchical Control via Null-Space Projection and Path Integral
Approach,” submitted to 2024 American Control Conference (ACC)

• M. Baglioni, A. Patil, L. Sentis, A. Jamshidnejad “Achieving Multi-UAV Best Viewpoint Coordination in Ob-
structed Environments,” submitted to 2024 American Control Conference (ACC)

10 Summary
The summary of this dissertation proposal is depicted in Figure 27. The proposal focuses on advancing path integral
control theory for solving Stochastic Optimal Control (SOC) problems, which are prevalent in systems influenced by un-
certainties and random disturbances, such as autonomous robotics. Traditional SOC methods like dynamic programming
face computational challenges, particularly in high-dimensional, nonlinear systems. The path integral approach offers a
promising alternative by transforming the SOC problem into an expectation over noisy system trajectories, allowing for
efficient computation using Monte Carlo sampling. The dissertation explores and develops the path integral control theory
for six different classes of SOC problems as shown in Figure 27, with an emphasis on real-time applications and scalability
through parallel computing on GPUs. Through these contributions, the research enhances the utility of the path integral
control method for handling complex, nonlinear, and safety-critical systems. This work also presents a sample complexity
analysis and outlines future directions for developing autonomous systems based on path integral control theory.

Figure 27: Summary of the dissertation proposal

11 Appendix

11.1 Nonconvex Optimization and Strong Duality
Let X be a vector space. Suppose f0 and f1 are not necessarily convex, real-valued functions defined on X . The domains
of the functions f0 and f1 are denoted by dom(f0) and dom(f1), respectively. Consider the following optimization

65

problem with a single inequality constraint:

min
x∈X

f0(x) (176a)

f1(x) ≤ 0. (176b)

We assume dom(f0) ∩ dom(f1) is nonempty, and f0(x) > −∞ ∀x ∈ dom(f0) ∩ dom(f1).
Let η ≥ 0 be the dual variable. Define the dual function g : [0,∞)→ R̄ by

g(η) = inf
x∈X

f0(x) + ηf1(x). (177)

Since (177) is a pointwise infimum of a family of affine functions, it is concave. Moreover, since affine functions are
upper semicontinuous, g(η) is also upper semicontinuous.

Assumption 7. Problem (176) is strictly feasible. That is, there exists x0 ∈ dom(f0) such that f1(x0) < 0.

Lemma 3. Under Assumption 7, there exists a dual optimal solution η∗ such that 0 ≤ η∗ < ∞ such that g(η∗) =
supη≥0 g(η).

Proof. Since g(η) is upper semicontinuous, by Weierstrass’ theorem [120, Proposition A.8], it is sufficient to prove that
the function −g(η) is coersive. Specifically, it is sufficient to show that there exists a scalar γ such that the set

η(γ) := {η ≥ 0 | g(η) ≥ γ}

is nonempty and compact.
We will show that the choice γ := infx∈X f0(x) will make η(γ) nonempty and bounded. To see that η(γ) is nonempty,

notice that
g(0) = inf

x∈X
f0(x) = γ

and thus 0 ∈ η(γ).
To prove η(γ) is bounded, we need to show that g(η)↘ −∞ as η → +∞. Let x0 be a strictly feasible solution, i.e.,

f1(x0) < 0. We have

g(η) = inf
x
f0(x) + ηf1(x)

≤ f0(x0) + η f1(x0)︸ ︷︷ ︸
<0

→ −∞

as η → +∞. This completes the proof.

To proceed further, we need an additional set of assumptions.

Assumption 8. (i) For each η ≥ 0, the set

X(η) := argmin
x∈X

f0(x) + ηf1(x)

is nonempty.

(ii) The function η 7→ f1(X(η)) : [0,∞) → R is well-defined. That is, if x1 ∈ X(η) and x2 ∈ X(η), then f1(x1) =
f2(x2).

(iii) The function f1(X(·)) is continuous.

Lemma 4. Suppose Assumption 7 holds so that a dual optimal solution 0 ≤ η∗ < +∞ exists (c.f., Lemma 3). The
following statements hold:

(i) If η∗ = 0, then f1(X(η∗)) ≤ 0.

(ii) If η∗ > 0, then f1(X(η∗)) = 0.

66

Proof. (i) Suppose η∗ = 0 but f1(X(η∗)) > 0. Set ηϵ = ϵ > 0. By continuity of f1(X(·)), we have f1(X(ηϵ)) > 0 for a
sufficiently small ϵ. Notice that

g(ηϵ) = f0(X(ηϵ)) + ηϵf1(X(ηϵ))︸ ︷︷ ︸
>0

> f0(X(ηϵ))

≥ min
x∈X

f0(x)

= min
x∈X

f0(x) + η∗f1(x)

= g(η∗).

However, this chain of inequalities contradicts to the fact that η∗ is the dual optimal solution (i.e., η∗ maximizes g(η)).
(ii) Suppose η∗ > 0 and f1(X(η∗)) > 0. Set ηϵ = η∗+ϵ where ϵ > 0 is sufficiently small. By continuity of f1(X(·)),

we have f1(X(ηϵ)) > 0. Notice that

g(ηϵ) = f0(X(ηϵ)) + ηϵf1(X(ηϵ))

= f0(X(ηϵ)) + η∗f1(X(ηϵ)) + ϵf1(X(ηϵ))︸ ︷︷ ︸
>0

> f0(X(ηϵ)) + η∗f1(X(ηϵ))

≥ min
x∈X

f0(x) + η∗f1(x)

= g(η∗).

This contradicts to the fact that η∗ maximizes g(η).
Similarly, suppose η∗ > 0 and f1(X(η∗)) < 0. Set ηϵ = η∗ − ϵ and choose ϵ > 0 sufficiently small so that ηϵ > 0

and f1(X(ηϵ)) < 0. We have

g(ηϵ) = f0(X(ηϵ)) + ηϵf1(X(ηϵ))

= f0(X(ηϵ)) + η∗f1(X(ηϵ))− ϵ f1(X(ηϵ))︸ ︷︷ ︸
<0

> f0(X(ηϵ)) + η∗f1(X(ηϵ))

≥ min
x∈X

f0(x) + η∗f1(x)

= g(η∗).

Again, this contradicts to the fact that η∗ maximizes g(η). Therefore, if η∗ > 0 then f1(X(η∗)) = 0 must hold.

The following is the main result of this section.

Theorem 17. Consider problem (176) and suppose Assumptions 7 and 8 hold. Then, there exists a dual optimal solution
0 ≤ η∗ < +∞ that maximizes g(η). Moreover, the set

X(η∗) := argmin
x∈X

f0(x) + η∗f1(x)

is nonempty, and any element x∗ ∈ X(η∗) is a primal optimal solution such that f0(x∗) = g(η∗). i.e., the duality gap is
zero. Consequently, a minimizer of f0(x) + η∗f1(x) is an optimal solution of (176).

Proof. By Lemma 4, any element x∗ ∈ X(η∗) satisfies f1(x∗) ≤ 0. Hence, x∗ satisfies primal feasibility. It also follows
from Lemma 4 that η∗f1(x∗) = 0, i.e., the complementary slackness condition holds. Therefore,

f0(x
∗) = f0(x

∗) + η∗f1(x
∗) (Complementary slackness)

= min
x∈X

f0(x) + η∗f(x) (since x∗ ∈ X(η∗))

= g(η∗).

Hence, the strong duality holds. Therefore, x∗ is a primal optimal solution. It follows from the identity above that a
minimizer of f0(x) + η∗f1(x) is an optimal solution for (176).

67

11.2 Legendre Duality
Let P and Q be probability distributions on (X ,B(X)), and C : X → R a given cost function. Define the internal energy
U(Q,C), free energy F (P,C) and relative entropy (KL divergence) D(Q∥P) as:

U(Q,C) :=

∫
X
C(x)Q(dx)

F (P,C) := −λ log
∫
X
exp

(
−C(x)

λ

)
P (dx)

D(Q∥P) :=
∫
X
log

dQ

dP
(x)Q(dx).

Then the following duality relationship holds:

F (P,C) = inf
Q
{U(Q,C) + λD(Q∥P)}

−λD(Q∥P) = inf
C
{U(Q,C)− F (P,C)}.

Also, the optimal probability distribution Q∗ is given by

Q∗(B) =

∫
B
exp(−C(x)/λ)P (dx)∫

X exp(−C(x)/λ)P (dx)
, ∀B ∈ B(X).

See [121, 34] for further discussions.

11.3 The Likelihood Ratio dQ∗

dP
(x)

Let Q(x) be the probability distribution of the trajectories defined by system (1) under the given policy u(·) and Q∗(x)
be the probability distribution of the trajectories defined by system (1) under the optimal policy u∗(·) Let P (x) be the
probability distribution of the trajectories defined by the uncontrolled system (2). Suppose the likelihood ratio of observing
a sample path x under the distributions Q and P is denoted by dQ

dP (x) and the expectation under any distribution Q is
denoted by EQ[·]. Let k(t) be a process defined by

k(t) := Σ−1Gu(t). (178)

Now, we state the following theorem:

Theorem 18 (The Girsanov theorem). The likelihood ratio dQ
dP (x) of observing a sample path x under distributions Q

and P is given by
dQ

dP
(x) = exp

(∫ tf

t0

k(t)⊤dw(t) +
1

2

∫ tf

t0

∥k(t)∥2dt
)

(179)

where the process k(t) is defined by (178).

Proof. Refer to [59, Chapter 8.6].

Theorem 19. Suppose we generate an ensemble of N trajectories {x(i)}Ni=1 under the distribution P . Let r(i) be the path
reward associated with the trajectory x(i) as given in (34). Define r :=

∑N
i=1 r

(i). Then as N →∞,

r(i)

r/N

a.s.→ dQ∗

dP
(x)

Proof. The likelihood ratio dQ
dP (x) of observing a sample path x is given by (179). Using this result, we obtain

EQ log

(
dQ

dP
(x)

)
=

1

2

∫ tf

t0

EQ∥k(t)∥2dt. (180)

In (180), we used the property of Itô integral [59, Chapter 3]:

EQ

[∫ tf

t0

k(t)⊤dw(t)

]
= 0

68

Now, for a given value of η, we wanted to solve the following problem

min
u(·)

EQ
x0,t0

[
ϕ(x(tf); η)+

∫ tf

t0

(
1

2
u⊤Ru+ V

)
dt

]
. (181)

According to Assumption 1, there exists a positive constant λ such that

R = λG⊤Σ−⊤Σ−1G. (182)

Now, we get

min
u(·)

EQ
x0,t0

[
ϕ(x(tf); η)+

∫ tf

t0

(
1

2
u⊤Ru+ V

)
dt

]
(183a)

=min
u(·)

EQ
x0,t0

[
ϕ(x(tf); η)+

∫ tf

t0

(
1

2
u⊤λG⊤Σ−⊤Σ−1Gu+V

)
dt

]
(183b)

=min
k(·)

EQ
x0,t0

[
ϕ(x(tf); η)+

∫ tf

t0

(
λ

2
∥k(t)∥2 + V

)
dt

]
(183c)

=min
Q(x)

∫
T

(
ϕ(x(tf); η) +

∫ tf

t0

V dt+ λ log
dQ

dP
(x)

)
Q(dx). (183d)

Equation (183b) is obtained by plugging (182) into (183a). (183c) obtained by using (178) and (183d) by using (180).
Thus, we converted the problem (181) into a KL control problem. Invoking the Legendre duality between the KL di-
vergence and free energy (See Appendix 11.2) it can be shown that there exists a minimizer Q∗ of (183d) which can be
written as

Q∗(dx) =
exp

(
− 1

λ

(
ϕ(x(tf); η) +

∫ tf
t0
V dt

))
P (dx)

EP
[
exp

(
− 1

λ

(
ϕ(x(tf); η) +

∫ tf
t0
V dt

))] (184)

Using (184), we can write the expression for the Radon-Nikodym derivative dQ∗

dP (x) as

dQ∗

dP
(x) =

exp
(
− 1

λ

(
ϕ(x(tf); η) +

∫ tf
t0
V dt

))
EP
[
exp

(
− 1

λ

(
ϕ(x(tf); η) +

∫ tf
t0
V dt

))] (185)

Using (185), we can conclude that given the ensemble of N trajectories {x(i)}Ni=1 sampled under distribution P , the
likelihood ratio dQ∗

dP of observing a sample path x(i) is given by r(i)

r/N where r(i) is defined by (34) and r :=
∑N

i=1 r
(i).

Using the strong law of large numbers as N →∞, we get

r(i)

r/N

a.s.→ dQ∗

dP
(x).

References
[1] R. Durrett, Probability: theory and examples, vol. 49. Cambridge university press, 2019.

[2] H. J. Kappen, “Path integrals and symmetry breaking for optimal control theory,” Journal of statistical mechanics:
theory and experiment, vol. 2005, no. 11, p. P11011, 2005.

[3] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control approach to reinforcement learning,”
The Journal of Machine Learning Research, vol. 11, pp. 3137–3181, 2010.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive driving with model predictive
path integral control,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1433–1440,
IEEE, 2016.

69

[5] B. Øksendal, Stochastic differential equations. Springer, 2003.

[6] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path integral control: From theory to parallel
computation,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[7] A. Patil, G. A. Hanasusanto, and T. Tanaka, “Discrete-time stochastic lqr via path integral control and its sample
complexity analysis,” IEEE Control Systems Letters, 2024.

[8] E. Nelson, “Derivation of the Schrödinger equation from newtonian mechanics,” Physical review, vol. 150, no. 4,
p. 1079, 1966.

[9] E. Nelson, Dynamical theories of Brownian motion, vol. 106. Princeton university press, 2020.

[10] H. Rosenbrock, “A variational principle for quantum mechanics,” Physics letters A, vol. 110, no. 7-8, pp. 343–346,
1985.

[11] H. H. Rosenbrock, “A stochastic variational treatment of quantum mechanics,” Proceedings of the Royal Society of
London. Series A: Mathematical and Physical Sciences, vol. 450, no. 1939, pp. 417–437, 1995.

[12] F. Guerra and L. M. Morato, “Quantization of dynamical systems and stochastic control theory,” Physical review
D, vol. 27, no. 8, p. 1774, 1983.

[13] K. Yasue, “Stochastic calculus of variations,” Journal of Functional Analysis, vol. 41, no. 3, pp. 327–340, 1981.

[14] T. Itami, “Optimization of nonlinear control systems based on the principle of superposition (in japanese),”
Transactions of the Society of Instrument and Control Engineers, vol. 37, no. 3, pp. 193–202, 2001.
DOI:10.9746/sicetr1965.37.193.

[15] T. Itami, “Nonlinear optimal control via Monte-Carlo evaluation of path integrals (in japanese),” Transactions
of the Institute of Systems, Control and Information Engineers, vol. 16, no. 12, pp. 637–648, 2003. DOI:
10.5687/iscie.16.637.

[16] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, vol. 25. Springer Science &
Business Media, 2006.

[17] P. Whittle, “Risk-sensitive linear/quadratic/Gaussian control,” Advances in Applied Probability, vol. 13, no. 4,
pp. 764–777, 1981.

[18] D. Jacobson, “Optimal stochastic linear systems with exponential performance criteria and their relation to deter-
ministic differential games,” IEEE Transactions on Automatic control, vol. 18, no. 2, pp. 124–131, 1973.

[19] I. R. Petersen, M. R. James, and P. Dupuis, “Minimax optimal control of stochastic uncertain systems with relative
entropy constraints,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 398–412, 2000.

[20] E. Todorov, “Linearly-solvable Markov decision problems,” Advances in Neural Information Processing Systems,
vol. 19, 2006.

[21] E. Todorov, “Efficient computation of optimal actions,” Proceedings of the national academy of sciences, vol. 106,
no. 28, pp. 11478–11483, 2009.

[22] P. Piray and N. D. Daw, “Linear reinforcement learning in planning, grid fields, and cognitive control,” Nature
communications, vol. 12, no. 1, p. 4942, 2021.

[23] L. C. Evans, Partial differential equations, vol. 19. American Mathematical Society, 2022.

[24] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor skills in high dimensions: A path integral
approach,” in 2010 IEEE International Conference on Robotics and Automation, pp. 2397–2403, IEEE, 2010.

[25] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, “Skill learning and task outcome prediction for
manipulation,” in 2011 IEEE International Conference on Robotics and Automation, pp. 3828–3834, IEEE, 2011.

70

[26] N. Sugimoto and J. Morimoto, “Phase-dependent trajectory optimization for CPG-based biped walking using path
integral reinforcement learning,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp. 255–
260, IEEE, 2011.

[27] E. Rombokas, E. Theodorou, M. Malhotra, E. Todorov, and Y. Matsuoka, “Tendon-driven control of biomechanical
and robotic systems: A path integral reinforcement learning approach,” in 2012 IEEE International Conference on
Robotics and Automation, pp. 208–214, IEEE, 2012.

[28] M. Okada and T. Taniguchi, “Acceleration of gradient-based path integral method for efficient optimal and inverse
optimal control,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3013–3020,
IEEE, 2018.

[29] I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D. Fox, “Model-based generalization under
parameter uncertainty using path integral control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2864–
2871, 2020.

[30] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox, F. Ramos, and B. Boots, “Storm: An
integrated framework for fast joint-space model-predictive control for reactive manipulation,” in Conference on
Robot Learning, pp. 750–759, PMLR, 2022.

[31] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou, “Information the-
oretic MPC for model-based reinforcement learning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1714–1721, IEEE, 2017.

[32] S. Satoh and H. J. Kappen, “Nonlinear stochastic optimal control with input saturation constraints based on path
integrals,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 15, no. 8, pp. 1169–1175, 2020.

[33] J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained stochastic optimal control with learned importance
sampling: A path integral approach,” The International Journal of Robotics Research, vol. 41, no. 2, pp. 189–209,
2022.

[34] E. A. Theodorou and E. Todorov, “Relative entropy and free energy dualities: Connections to path integral and KL
control,” The 51st IEEE Conference on Decision and Control (CDC), pp. 1466–1473, 2012.

[35] H. J. Kappen, V. Gómez, and M. Opper, “Optimal control as a graphical model inference problem,” Machine
learning, vol. 87, pp. 159–182, 2012.

[36] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and review,” arXiv preprint
arXiv:1805.00909, 2018.

[37] S. Satoh, H. J. Kappen, and M. Saeki, “An iterative method for nonlinear stochastic optimal control based on path
integrals,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 262–276, 2016.

[38] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix
inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996.

[39] Y. Kuwata, A. Richards, and J. How, “Robust receding horizon control using generalized constraint tightening,” in
2007 American Control Conference, pp. 4482–4487, IEEE, 2007.

[40] G. C. Calafiore and M. C. Campi, “The scenario approach to robust control design,” IEEE Transactions on auto-
matic control, vol. 51, no. 5, pp. 742–753, 2006.

[41] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained optimal path planning with obstacles,” IEEE
Transactions on Robotics, vol. 27, no. 6, pp. 1080–1094, 2011.

[42] K. Oguri, M. Ono, and J. W. McMahon, “Convex optimization over sequential linear feedback policies with
continuous-time chance constraints,” in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 6325–
6331, IEEE, 2019.

[43] M. Vidyasagar, “Randomized algorithms for robust controller synthesis using statistical learning theory,” Automat-
ica, vol. 37, no. 10, pp. 1515–1528, 2001.

71

[44] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained dynamic programming with application to
risk-aware robotic space exploration,” Autonomous Robots, vol. 39, no. 4, pp. 555–571, 2015.

[45] A. Wang, A. Jasour, and B. C. Williams, “Non-gaussian chance-constrained trajectory planning for autonomous
vehicles under agent uncertainty,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6041–6048, 2020.

[46] O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-based trajectory optimization in
uncertain dynamic environments,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5389–5396, 2021.

[47] B. Li, Y. Tan, A.-G. Wu, and G.-R. Duan, “A distributionally robust optimization based method for stochastic model
predictive control,” IEEE Transactions on Automatic Control, vol. 67, no. 11, pp. 5762–5776, 2021.

[48] A. Jasour, W. Han, and B. Williams, “Convex risk bounded continuous-time trajectory planning in uncertain non-
convex environments,” in 2021 Robotics: Science and Systems, 2021.

[49] Y. K. Nakka and S.-J. Chung, “Trajectory optimization for chance-constrained nonlinear stochastic systems,” in
2019 IEEE 58th conference on decision and control (CDC), pp. 3811–3818, IEEE, 2019.

[50] P. Hokayem, D. Chatterjee, and J. Lygeros, “Chance-constrained LQG with bounded control policies,” in 52nd
IEEE Conference on Decision and Control, pp. 2471–2476, IEEE, 2013.

[51] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,” SIAM Journal on Opti-
mization, vol. 17, no. 4, pp. 969–996, 2007.

[52] J. A. Paulson and A. Mesbah, “An efficient method for stochastic optimal control with joint chance constraints for
nonlinear systems,” International Journal of Robust and Nonlinear Control, vol. 29, no. 15, pp. 5017–5037, 2019.

[53] K. M. Frey, T. J. Steiner, and J. How, “Collision probabilities for continuous-time systems without sampling,”
Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA (July 2020), 2020.

[54] A. Patil and T. Tanaka, “Upper and lower bounds for end-to-end risks in stochastic robot navigation,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 5603–5608, 2023.

[55] A. Patil and T. Tanaka, “Upper bounds for continuous-time end-to-end risks in stochastic robot navigation,” in 2022
European Control Conference (ECC), pp. 2049–2055, IEEE, 2022.

[56] X. Huang, M. Feng, A. Jasour, G. Rosman, and B. Williams, “Risk conditioned neural motion planning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9057–9063, IEEE, 2021.

[57] A. Chern, X. Wang, A. Iyer, and Y. Nakahira, “Safe control in the presence of stochastic uncertainties,” in 2021
60th IEEE Conference on Decision and Control (CDC), pp. 6640–6645, IEEE, 2021.

[58] S. K. Shah, C. D. Pahlajani, and H. G. Tanner, “Probability of success in stochastic robot navigation with state
feedback,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3911–3916, IEEE,
2011.

[59] B. Oksendal, Stochastic differential equations: an introduction with applications. Springer Science & Business
Media, 2013.

[60] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[61] A. Friedman, Stochastic differential equations and applications, vol. 1. Academic Press, 1975.

[62] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113. Springer Science & Business Media,
2012.

[63] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory. Courier Corporation, 2007.

[64] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical treatment of partial differential equations, vol. 154. Springer,
2007.

[65] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM journal on scientific computing, vol. 18,
no. 1, pp. 1–22, 1997.

72

[66] H.-J. Yoon, C. Tao, H. Kim, N. Hovakimyan, and P. Voulgaris, “Sampling complexity of path integral methods for
trajectory optimization,” in 2022 American Control Conference (ACC), pp. 3482–3487, IEEE, 2022.

[67] T. Başar and G. J. Olsder, Dynamic noncooperative game theory. SIAM, 1998.

[68] P. J. Nahin, “Chases and escapes,” in Chases and Escapes, Princeton University Press, 2012.

[69] W. Sun and P. Tsiotras, “Pursuit evasion game of two players under an external flow field,” in 2015 American
Control Conference (ACC), pp. 5617–5622, 2015.

[70] M. Falcone, “Numerical methods for differential games based on partial differential equations,” International Game
Theory Review, vol. 8, no. 02, pp. 231–272, 2006.

[71] H. Huang, J. Ding, W. Zhang, and C. J. Tomlin, “Automation-assisted capture-the-flag: A differential game ap-
proach,” IEEE Transactions on Control Systems Technology, vol. 23, no. 3, pp. 1014–1028, 2014.

[72] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi formulation of reachable sets
for continuous dynamic games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp. 947–957, 2005.

[73] D. Vrabie and F. Lewis, “Adaptive dynamic programming for online solution of a zero-sum differential game,”
Journal of Control Theory and Applications, vol. 9, no. 3, pp. 353–360, 2011.

[74] M. Prajapat, K. Azizzadenesheli, A. Liniger, Y. Yue, and A. Anandkumar, “Competitive policy optimization,” in
Uncertainty in Artificial Intelligence, pp. 64–74, PMLR, 2021.

[75] M. Liu, Y. Wan, F. L. Lewis, and V. G. Lopez, “Adaptive optimal control for stochastic multiplayer differential
games using on-policy and off-policy reinforcement learning,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 12, pp. 5522–5533, 2020.

[76] X. Lin, P. A. Beling, and R. Cogill, “Multiagent inverse reinforcement learning for two-person zero-sum games,”
IEEE Transactions on Games, vol. 10, no. 1, pp. 56–68, 2017.

[77] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risk,” Mathematical finance, vol. 9, no. 3,
pp. 203–228, 1999.

[78] A. Dixit, M. Ahmadi, and J. W. Burdick, “Risk-averse receding horizon motion planning,” arXiv preprint
arXiv:2204.09596, 2022.

[79] D. Vrushabh, P. Akshay, K. Sonam, S. Wagh, and N. M. Singh, “Robust path integral control on stochastic differ-
ential games,” in 2020 28th Mediterranean Conference on Control and Automation (MED), pp. 665–670, IEEE,
2020.

[80] T. Başar and P. Bernhard, H-infinity optimal control and related minimax design problems: a dynamic game ap-
proach. Springer Science & Business Media, 2008.

[81] R. Isaacs, Differential games: a mathematical theory with applications to warfare and pursuit, control and opti-
mization. Courier Corporation, 1999.

[82] A. Patil, A. Duarte, A. Smith, F. Bisetti, and T. Tanaka, “Chance-constrained stochastic optimal control via path
integral and finite difference methods,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 3598–
3604, IEEE, 2022.

[83] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The null-space-based behavioral control for autonomous robotic
systems,” Intelligent Service Robotics, vol. 1, pp. 27–39, 2008.

[84] O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formu-
lation,” IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[85] S. B. Slotine and B. Siciliano, “A general framework for managing multiple tasks in highly redundant robotic
systems,” in proceeding of 5th International Conference on Advanced Robotics, vol. 2, pp. 1211–1216, 1991.

73

[86] L. Sentis, M. Mintz, A. Ayyagari, C. Battles, S. Ying, and O. Khatib, “Large scale multi-robot coordination under
network and geographical constraints,” in 2009 IEEE International Symposium on Industrial Electronics, pp. 1046–
1053, IEEE, 2009.

[87] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hierarchical control of behavioral primitives,”
International Journal of Humanoid Robotics, vol. 2, no. 04, pp. 505–518, 2005.

[88] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space projections for redundant, torque-controlled
robots,” The International Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.

[89] A. Patil, M. O. Karabag, T. Tanaka, and U. Topcu, “Simulator-driven deceptive control via path integral approach,”
in 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 271–277, IEEE, 2023.

[90] A. Patil, Y. Zhou, D. Fridovich-Keil, and T. Tanaka, “Risk-minimizing two-player zero-sum stochastic differential
game via path integral control,” in 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 3095–3101,
IEEE, 2023.

[91] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query sampling-based motion planning with quick
replanning,” The International Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.

[92] B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” Journal of intelligent and robotic
systems, vol. 3, pp. 201–212, 1990.

[93] G. Antonelli, “Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic
systems,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 985–994, 2009.

[94] G. Antonelli, G. Indiveri, and S. Chiaverini, “Prioritized closed-loop inverse kinematic algorithms for redundant
robotic systems with velocity saturations,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5892–5897, IEEE, 2009.

[95] Y. T. Tsai and D. E. Orin, “A strictly convergent real-time solution for inverse kinematics of robot manipulators,”
Journal of robotic systems, vol. 4, no. 4, pp. 477–501, 1987.

[96] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[97] J. Bretagnolle and C. Huber, “Estimation des densités: risque minimax,” Séminaire de probabilités de Strasbourg,
vol. 12, pp. 342–363, 1978.

[98] J. Shim and R. C. Arkin, “A taxonomy of robot deception and its benefits in HRI,” in 2013 IEEE international
conference on systems, man, and cybernetics, pp. 2328–2335, IEEE, 2013.

[99] A. Dragan, R. Holladay, and S. Srinivasa, “Deceptive robot motion: synthesis, analysis and experiments,” Au-
tonomous Robots, vol. 39, pp. 331–345, 2015.

[100] M. O. Karabag, M. Ornik, and U. Topcu, “Deception in supervisory control,” IEEE Transactions on Automatic
Control, vol. 67, no. 2, pp. 738–753, 2021.

[101] M. O. Karabag, M. Ornik, and U. Topcu, “Exploiting partial observability for optimal deception,” IEEE Transac-
tions on Automatic Control, 2022.

[102] M. Lloyd, The art of military deception. Pen and Sword, 2003.

[103] C. Wang and Z. Lu, “Cyber deception: Overview and the road ahead,” IEEE Security & Privacy, vol. 16, no. 2,
pp. 80–85, 2018.

[104] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in discrete event systems,” Discrete Event Dy-
namic Systems, vol. 28, pp. 289–314, 2018.

[105] E. Kung, S. Dey, and L. Shi, “The performance and limitations of epsilon-stealthy attacks on higher order systems,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 941–947, 2016.

[106] C.-Z. Bai, F. Pasqualetti, and V. Gupta, “Data-injection attacks in stochastic control systems: Detectability and
performance tradeoffs,” Automatica, vol. 82, pp. 251–260, 2017.

74

[107] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,” in International
conference on machine learning, pp. 1889–1897, PMLR, 2015.

[108] S. Filippi, O. Cappé, and A. Garivier, “Optimism in reinforcement learning and Kullback-Leibler divergence,” in
2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 115–122, IEEE,
2010.

[109] E. Todorov, “Linearly-solvable Markov decision problems,” Advances in neural information processing systems,
pp. 1369–1376, 2007.

[110] K. Ito and K. Kashima, “Kullback–Leibler control for discrete-time nonlinear systems on continuous spaces,” SICE
Journal of Control, Measurement, and System Integration, vol. 15, no. 2, pp. 119–129, 2022.

[111] D. Bertsekas, Dynamic programming and optimal control: Volume I, vol. 1. Athena scientific, 2012.

[112] Z. Guo, D. Shi, K. H. Johansson, and L. Shi, “Worst-case stealthy innovation-based linear attack on remote state
estimation,” Automatica, vol. 89, pp. 117–124, 2018.

[113] J. Shang, H. Yu, and T. Chen, “Worst-case stealthy innovation-based linear attacks on remote state estimation under
Kullback–Leibler divergence,” IEEE Transactions on Automatic Control, 2021.

[114] K. Ito and K. Kashima, “Kullback-leibler control for discrete-time nonlinear systems on continuous spaces,” 2022.

[115] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic stochastic optimal control via incremental
sampling-based algorithms,” in 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pp. 1–8, IEEE, 2014.

[116] D. Bertsekas and S. Shreve, Stochastic Optimal Control: The Discrete-Time Case. Athena Scientific, 1996.

[117] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” in The collected works of Wassily
Hoeffding, pp. 409–426, Springer, 1994.

[118] A. Prékopa, “Boole-Bonferroni inequalities and linear programming,” Operations Research, vol. 36, no. 1, pp. 145–
162, 1988.

[119] Z. Zhou and R. Cogill, “Reliable approximations of probability-constrained stochastic linear-quadratic control,”
Automatica, vol. 49, no. 8, pp. 2435–2439, 2013.

[120] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society, vol. 48, no. 3, pp. 334–
334, 1997.

[121] M. Boué and P. Dupuis, “A variational representation for certain functionals of Brownian motion,” The Annals of
Probability, vol. 26, no. 4, pp. 1641–1659, 1998.

75

	Introduction
	History of Path Integral Control
	Organization of the Proposal

	Chance-Constrained Stochastic Optimal Control
	Motivation
	Literature Review
	Contributions
	Preliminaries
	Controlled and Uncontrolled Processes
	Probability of Failure
	Exit Times

	Problem Formulation
	Chance-Constrained SOC Problem
	Dual SOC Problem

	Synthesis of Optimal Control Policies
	Computation of the Dual Function
	Strong Duality
	Risk Estimation
	Generalized Risk-Estimation PDE
	Solution of the Dual Problem (14)

	Simulation Results
	Input Velocity Model
	Unicycle Model
	Car Model

	Publications
	Future Work

	Two-Player Zero-Sum Stochastic Differential Game
	Motivation and Literature Review
	Contributions
	Problem Formulation
	Synthesis of Optimal Control Policies
	Backward Dynamic Programming
	Path Integral Solution

	Simulation Results
	Disturbance Attenuation Problem
	Pursuit-Evasion Game

	Publications
	Future Work

	Task Hierarchical Control
	Motivation and Literature Review
	Contributions
	Preliminaries
	Null-Space Projection
	Integration of Null Space Projection and Path Integral Control

	Simulation Results
	Single Agent Example
	Two Agents Example

	Publications
	Future Work

	Deceptive Control
	Motivation
	Literature Review
	Contributions
	Problem Formulation
	Synthesis of Optimal Control Policies
	Backward Dynamic Programming
	Path Integral Solution

	Simulation Results
	Publications
	Future Work

	Detection and Risk Mitigation of Stealthy Attack
	Worst-Case Attack Synthesis
	Attack risk mitigation
	Experimental Results

	Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Complexity Analysis
	Motivation and Literature Review
	Contributions
	KL Control via Path Integral
	Stochastic LQR via Path Integral
	Classical solution
	Path-integral-based solution

	Sample Complexity Analysis
	Sample Complexity Bound
	Upper Bound on the Control Performance

	Simulation Results
	Publications
	Future Work

	Proposed Dissertation Chapters and Timeline
	Publications
	Journal Publications
	Conference Publications

	Summary
	Appendix
	Nonconvex Optimization and Strong Duality
	Legendre Duality
	The Likelihood Ratio dQ*dP(x)

