
Chance-Constrained Motion Planning

Nikitha Gollamudi1 Apurva Patil2

Abstract— In this project, we use reinforcement learning to
solve the chance-constraint motion planning problem. Chance-
constrained motion planning is a method to synthesize an
optimal path in the presence of a noisy environment and robot
dynamics, that satisfies a user-specified threshold of failure
probability. Failure occurs when the robot hits the obstacles
in the domain or the boundary of the domain. Through
Lagrangian relaxation, we convert the chance-constrained (risk-
constrained) motion problem to a risk-minimizing problem.
We show that by choosing an appropriate Lagrange multiplier,
we can synthesize a policy which has an appropriate level of
safety. The video of the project presentation can be found at
https://youtu.be/vvBVWfXRAlsm. Source code can be found at
https://github.com/Nikitha2497/RL-Project.

I. INTRODUCTION

Safety-critical systems are required to be controlled within
their predefined safe regions over the entire operation hori-
zon. For the optimal path-planning of such systems, one
must balance the trade-off between the travel cost and safety.
When deployed in real-life environments, these systems are
subject to uncertainties that arise due to modeling errors,
uncertain localization, and disturbances. While some studies
consider robust control under set-bounded uncertainties [1],
in many cases, modeling uncertainties with unbounded (e.g.
Gaussian) distributions is advantageous over a set-bounded
approach [2]. In the case of unbounded uncertainties, it is
generally difficult to guarantee safety against all realizations
of noise. An alternative approach is to plan a path subject to
the constraint that the probability of collision is bounded
by a user-specified threshold. This problem is known as
the chance-constrained or risk-constrained motion planning
problem [3]. Unfortunately, the probability of collision over
the entire path is in general challenging to evaluate and
optimize against since it involves a multidimensional integra-
tion [4]. Many methods have been proposed in the literature
to solve the chance-constrained motion problem such as
iterative risk allocation [2], and sampling-based approach [5],
both based on the assumption that the probability of collision
over the entire path can be expressed as the sum of collision
probabilities at each time-step. This assumption does not
hold in general because the joint disjunctive probability is
not equivalent to the summation of probabilities of individual
constraints. In fact, the summation is usually an upper bound
of the joint probability, and optimizing for the summed con-
straints will likely lead to conservative paths. In this project,
we wish to take a similar approach that Apurva has been
using for her research in the controls domain, however, with

1Department of Computer Science, University of Texas at Austin.
nikithag@utexas.edu. 2Walker Department of Mechanical Engi-
neering, University of Texas at Austin. apurvapatil@utexas.edu.

the RL algorithms. We will convert the risk-constrained prob-
lem into a risk-minimizing one using a Lagrange multiplier
and augment the cost function of the MDP with the cost of
failure due to collision. The Lagrange multiplier balances the
trade-off between the travel cost and the collision probability.
Moreover, the Lagrange multiplier can be tuned appropriately
to achieve a desired level of safety. We will use the notion
of exit-time [6] from the continuous-time stochastic calculus
along with the existing RL algorithms (such as Q-learning
and semi-gradient SARSA [7]) to solve the risk-minimizing
problem with the augmented cost function.

In addition to constrained MDP-based approaches like
ours, there exist works that improve safety by generating
more samples in the risky region to bootstrap performance
in critical scenarios [8]; by using a safety layer at the end
of a deep neural network to verify the safety of the resulting
policy and replacing with a backup safe action if needed
[9]; by proposing a reachability-based trajectory safe guard
to ensure the safety of a policy [10], etc.

The report is organized as follows: we consider a discrete
state-space problem in Section II and continuous state-space
in Section III. In both these sections, we present the problem
formulation, algorithms to compute an optimal policy and
its safety, and experimental results. Finally, we present the
conclusions in Section IV.

II. DISCRETE STATE SPACE

First, we consider a discrete state and action-space prob-
lem.

A. Problem Formulation

In this section, we define the environment, chance con-
straint and the problem formulation of optimal policy syn-
thesis.

1) Environment: We consider a grid-world with an obsta-
cle placed in between the start and the goal state as shown
in Fig. 1 The state-space is represented by

S = {x0, x1, . . . x63}. (1)

I , G represent the start and the goal states, respectively,
as shown in Fig. 1. The unsafe states are shown in red
color and the set of such states is represented by Su. The
states corresponding to the boundary of the domain and the
obstacle are unsafe. The set of safe states is represented by
Ss = S\Su. There are four actions available, North (N ),
West (W ), South (S), and East (E). The action space is
shown as follows:

A = {N,W,S,E}. (2)

https://youtu.be/vvBVWfXRAls
https://github.com/Nikitha2497/RL-Project


Fig. 1. Grid-world where the red states represent the unsafe states Su and
the remaining states represent the safe states Ss. The initial and the goal
states are shown by I , and G respectively.

We consider the terminal states are Su+G, and the episode
ends when the agent reaches one of these terminal states.
The environment and the robot dynamics are noisy. If SN ,
SNW , and SNE represent the states North, North-West and
North-East of the state S, respectively, then the transition
dynamics is as follows:

P (SN |S,N) = 0.9

P (SNW |S,N) = 0.05

P (SNE |S,N) = 0.05.

(3)

Similarly, the transition dynamics for other actions can be
written. A reward of −λ is given for every transition step
and a reward of RG is given when the goal is reached. The
transition and reward functions are not known to the agent.

2) Chance Constraint: We say that the agent fails when
it goes into the one of the unsafe states Su. If the episode
starts at time t0 and ends at tf , the probability of failure
Pfail associated with policy π can be written as:

Pfail = Eπ

[
1Stf

∈Su
|St0 = I

]
(4)

where St represents the state at time t, and 1E is an indicator
function, which returns 1 when the condition E holds and 0
otherwise. Note that tf is a random variable that varies from
episode to episode. Now, we want Pfail to be below a user
specified threshold ∆ ∈ (0, 1). This can be written formally
as

Pfail < ∆. (5)

The constraint (5) is called as a chance constraint [2], [3].
3) Optimal Policy Synthesis: Our goal is to find a shortest

path from the start state I to the goal state G subject to the
constraint (5). Let us first define the return of an episode
starting at time t0 as follows:

Ut0 =

tf∑
t=t0

Rt (6)

where Rt denotes the reward received at time t. Now, the
risk-constrained motion planning problem can be formally
written as:

Problem 1 (Risk-constrained motion planning problem):

argmax
π

Eπ

[
Ut0 |St0 = I

]
s.t. Pfail < ∆.

(7)

We approach Problem 1 via Lagrangian relaxation. We define
the following risk-minimizing motion planning problem:

Problem 2 (Risk-minimizing motion planning problem):

argmax
π

{
Eπ

[
Ut0 |St0 = I

]
− η · Pfail

}
. (8)

Here η ≥ 0 is the Lagrange multiplier that balances the trade-
off between the expected cumulative reward function and the
failure probability. By tuning η, we can achieve the desired
level of risk threshold defined by ∆. It is possible to establish
the exact correspondence between η and ∆, however, it is
not in the scope of this project. In what follows, we will
treat η as a constant environment parameter, and focus on
Problem 2. In Section II-D, we demonstrate how different
values of η achieve different π∗ and failure probabilities.

Using (4), Problem 2 can be converted to finding π∗ such
that

π∗ =argmax
π

Eπ

[
Ut0 − η · 1Stf

∈Su
|St0 = I

]
=argmax

π
Eπ

[
U ′
t0 |St0 = I

]
.

(9)

where,
U ′
t0 = Ut0 − η · 1Stf

∈Su
. (10)

(10) suggests that the agent gets a reward of −η at the end
of the episode if that episode ends in one of the unsafe
states Su. This is in addition to the rewards of −λ for
every transition step, and RG for the goal state. Note that
unlike [2], and [5], the formulation in (9) doesn’t make a
conservative approximation of the failure probability over the
entire trajectory as the sum of failure probabilities at each
time-step.

B. Algorithm

In this section, we modify the standard Q-learning algo-
rithm [7] to solve the problem (9). We use the ϵ-greedy
behaviour policy and ϵ is decreased over the episodes. The
step size α is also decreased over the episodes. The pseudo
code of the modified Q-learning algorithm is provided in
Algorithm 1.

At the end of Algorithm 1, we estimate optimal Q values:
Q∗. We can then find the optimal policy as a greedy policy:

π∗(s) = argmax
a

Q∗(s, a), ∀ s ∈ S.

C. Risk Estimation of π∗

In this section, we find how risky the computed optimal
policy π∗ (derived using Algorithm 1) is.

1) Problem Formulation: The problem of risk estimation
of π∗ can be states as follows:

Problem 3 (Risk Estimation): Find the probability of fail-
ure (Pfail) defined as (4), given a policy π∗.
We note that the value-function of the start state I under
policy π∗ can be written as

vπ∗(I) = Eπ∗
[
Ut0 |St0 = I

]
. (11)



Algorithm 1: Modified Q-learning
Parameters: step size α ∈ (0, 1], ϵ > 0, rewards

λ,RG, η > 0, γ = 1.
1 Initialize Q(s, a), ∀ s ∈ S, a ∈ A, arbitrarily except

that Q(s, .) = 0, ∀ s ∈ Su, and Q(G, .) = 0.
2 Loop for each episode:
3 St0 ← I
4 Loop for each step of the episode:
5 Choose At from St using ϵ-greedy policy

derived from Q
6 Take action At and observe Rt+1, St+1

7 if St+1 = G then
8 Q(St, At)←

Q(St, At) + α
[
Rt+1 +RG −Q(St, At)

]
9 break

10 end
11 else if St+1 ∈ Su then
12 Q(St, At)←

Q(St, At) + α
[
Rt+1 − η −Q(St, At)

]
13 break
14 end
15 else
16 Q(St, At)← Q(St, At) + α

[
Rt+1 +

γ maxaQ(St+1, a)−Q(St, At)
]

17 St ← St+1

18 end
19 end
20 end

Now, assume that after we find the policy π∗, we change our
reward function. We set

λ = 0, RG = 0, η = 1. (12)

Under this reward function we can write

Ut0 = 1Stf
∈Su (13)

and
vπ∗(I) = Eπ∗

[
1Stf

∈Su |St0 = I
]
. (14)

From (4), we recognize that computing the value-function
defined in (14) is in fact the risk estimation problem (Problem
3). Now, we find (14) using TD(0).

2) Algorithm: We modify the standard prediction algo-
rithm TD(0) [7] to find vπ∗(I). The step size α is decreased
over the episodes. The pseudo code of the modified TD(0)
is provided in Algorithm 2.

Algorithm 2: Modified TD(0)
Input : π∗ synthesized from Algorithm 1
Parameters: step size α ∈ (0, 1], γ = 1

1 Initialize V (s), ∀ s ∈ S arbitrarily except that
V (s) = 0, ∀ s ∈ Su, and V (G) = 0.

2 Loop for each episode:
3 St0 ← I
4 Loop for each step of the episode:
5 At ← π∗(St)
6 Take action At and observe St+1

7 if St+1 = G then
8 V (St)← V (St)− α

[
V (St)

]
9 break

10 end
11 else if St+1 ∈ Su then
12 V (St)← V (St) + α

[
1− V (St)

]
13 break
14 end
15 else
16 V (St)← V (St) + α

[
γ V (St+1)− V (St)

]
17 St ← St+1

18 end
19 end
20 end

At the end of Algorithm 2, we estimate vπ∗ . We can then
find the failure probability of policy π∗ as

Pfail = vπ∗(I). (15)

D. Experiments

We performed the experiments on the grid-world described
in Fig. 1 in a noisy environment. Recall that the following
are the parameters - step size α ∈ (0, 1], ϵ > 0, rewards
λ,RG, η > 0, γ. We assumed the rewards to be non-
discounted. So, the γ is always set to 1. We used 100000
episodes for the control learning. The step size α and the ϵ
are decreased slowly for every 1000 episodes. We considered
the control cost λ to be 1 and the goal reward RG to be
5. With these values of λ and RG we are able to show
the difference between multiple η values. With the same
set of parameters except η, we ran the modified Q-learning
algorithm 1 for different η values.

We would expect that in the grid-world described in 1,
the agent learns to go West for lower η values and the agent
learns to take a more safer route, that is East for higher η
values. We were able to observe the same in our experiments.
So we considered two η values, η1 = 15 and η2 = 50 for our
experiments. For the graphs in Figures 2 and 4 we plotted
the confidence interval with one standard deviation for 10
runs.

In Figure 2, we show that the action-values of the initial
state I and action E and the Q state action values of the
initial state I and action W converge for both the η values.
We can also see that the Q(I,W ) is greater than the Q(I, E)



(a) η = 15 (b) η = 50

Fig. 2. Convergence of the Q-values of the initial state I and actions
W and E for two different η’s. The shaded region represent one standard
deviation.

(a) η = 15 (b) η = 50

Fig. 3. Optimal Greedy Policy after 100000 episodes

for the smaller η = 15 and Q(I, E) is greater than the
Q(I,W ) is for the higher η = 50.

At the end of modified Q-learning 1, the agent learns the
optimal greedy policy. In Figure 3, we can see the optimal
greedy policy learnt by the agent after 100,000 episodes for
both the η values 15 and 50.

Figure 4 (a) shows the no noise trajectory for both the η
values. We use the optimal deterministic greedy policy learnt
from a noisy environment at the end of the 100,000 episodes
to plot a trajectory in a no noise environment. We can see
that the agent takes the shortest path although riskier for a
smaller η and takes a more safer although longer router for
a higher η.

Lastly, we estimated the probability of failure Pfail using
the modified TD prediction algorithm 2. Figure 4 (b) shows
the Pfail values as the episodes increase for both the η
values. We plotted the Pfail for 100,000 episodes over 10
runs with a confidence interval of one standard deviation. We
can see that the Pfail value converges for both η1 = 15 and
η2 = 50. We can also see that the Pfail value for a smaller
η is higher than the Pfail value for a higher η.

III. CONTINUOUS STATE SPACE

We consider the similar problem as Section II, however
we make our state-space continuous.

A. Problem Formulation

We consider a continuous-space domain with an obstacle
as shown in Fig. 5. The state-space is represented by

S =
{ [

x1 x2

]T
, s.t.

[
x1 x2

]T ∈ R2
}
. (16)

(a) (b)
Fig. 4. (a) No noise trajectories for η = 15 and η = 50 (b) Convergence
of Pfail for η = 15 and η = 50 with one standard deviation.

Fig. 5. Continuous state space where the red region represent the unsafe
states Su and the white region represents the safe states Ss. The green
region represents the goal region SG and the initial state is shown by I .

As in the discrete state-space, the unsafe region is shown
in red hatching and represented by Su. The safe region is
represented by Ss = S\Su. The start state is I and the goal
region SG is shown by a blue rectangle. Similar the Section
II-A.1, there are four actions available and the action space is
same as (2). The terminal states are Su+G. The environment
and the robot dynamics are noisy. If the action E is taken at
time t then the agent’s states change as follows:

x1(t+ 1) = x1(t) + β1 + n1(t), n1(t) ∼ N
(
0, σ2

)
,

x2(t+ 1) = x2(t) + n2(t), n2(t) ∼ N
(
0, σ2

)
.

(17)
where β1 is some environment parameter, and n1, n2 are
Gaussian white noises having covariance σ2, also an environ-
ment parameter. Similarly, if the action W is taken then the
dynamics is same as (17) except, we will have −β1 instead
of +β1. If the action N is taken then we get

x1(t+ 1) = x1(t) + n1(t), n1(t) ∼ N
(
0, σ2

)
,

x2(t+ 1) = x2(t) + β2 + n2(t), n2(t) ∼ N
(
0, σ2

)
.

(18)
and for action S we get the same dynamics as (18) except
−β2. Similar to (17), β2 is an environment parameter. The
reward function is same as Section II-A.1, and the transition
and the reward functions are not known to the agent.

The chance constraint and the problem formulation of
optimal policy synthesis are same as the Sections II-A.2, and
II-A.3 respectively. Here our goal is to find a shortest path



from the start state I to the goal region SG, subject to the
constraint (5). As before, we will solve the risk-minimizing
motion planning problem defined as Problem 2.

B. Function Approximation

In this project, we consider linear state and action-value
function approximations as follows:

v̂(s,www) = wwwTxxx(s)

q̂(s, a,www) = wwwTxxx(s, a)

where xxx(s), xxx(s, a) ∈ Rd are d-dimensional feature vectors
and www ∈ Rd is weight vector. We considered two types of
features, polynomials and tile coding.

1) Polynomial Features: For the state-value function, we
choose the following four dimensional polynomial feature
vector

xxx(s) =
[
1 x1 x2 x1x2

]T
. (19)

The initial 1 feature allows the representation of affine
functions in the original state variables x1, x2, and the final
product feature, x1x2, enable interactions to be taken into
account. The polynomial feature vector xxx(s, a) can also be
constructed similarly whose dimension will be 16, since our
action space is four dimensional.

2) Tile Coding: In the tile coding, we use one tiling of
size [0, 1] × [0, 1] having a uniform grid. This is similar to
state aggregation. The width of each tile is 0.1. The feature
vector xxx(s) will have 100 components, all of which will be
0 except for one corresponding to the tile that s falls within.
Similarly, the feature vector xxx(s, a) can be constructed whose
dimension will be 400. All of these 400 components will be
0, except for one.

C. Algorithm

In this section, we modify the standard semi-gradient
SARSA [7] to solve the problem (9) for continuous state-
space. Unlike the discrete state-space, here, we use SARSA
instead of Q-learning to avoid the deadly triad. Since SARSA
is an on-policy control algorithm both behaviour and target
policies are the same. We use ϵ-greedy policy and ϵ is
decreased over the episodes. Similarly, step size α is also
decreased over the episodes. Since we are using a linear
function approximation, ∇q̂(s, a,www) = xxx(s, a). The pseudo
code of the modified semi-gradient SARSA is provided in
Algorithm 3.

At the end of Algorithm 3, we estimate the optimal weight
vector www∗. We can then find the optimal policy as a greedy
policy:

π∗(s) = argmax
a

www∗Txxx(s, a), ∀ s ∈ S.

D. Risk Estimation of π∗

In this section, we find how risky the optimal policy
π∗ (derived using Algorithm 3) is. The problem of risk
estimation of π∗ is same as P0roblem 3. Again, under the
reward function (12), the value function of the start state
I under policy π∗ can be written as (14), which is the

Algorithm 3: Modified semi-gradient SARSA
Input : a differentiable linear action-value

function parameterization
q̂(s, a,www) = wwwTxxx(s, a)

Parameters: step size α ∈ (0, 1], ϵ > 0, rewards
λ,RG, η > 0, γ = 1.

1 Initialize value-function weights wwwt0 ∈ R2 arbitrarily
(e.g.. wwwt0 = 000)

2 Loop for each episode:
3 St0 ← I
4 Choose At0 from St0 using ϵ-greedy policy

derived from q̂(St0 , .,wwwt0)
5 Loop for each step of the episode:
6 Take action At and observe Rt+1, St+1

7 if St+1 ∈ SG then
8 wwwt+1 ← wwwt + α

[
Rt+1 +RG −

q̂(St, At,wwwt)
]
xxx(St, At)

9 break
10 end
11 else if St+1 ∈ Su then
12 wwwt+1 ←

wwwt+α
[
Rt+1−η−q̂(St, At,wwwt)

]
xxx(St, At)

break
13 end
14 else
15 Choose At+1 from St+1 using ϵ-greedy

policy derived from q̂(St+1, .,wwwt)

wwwt+1 ← wwwt + α
[
Rt+1 + γ q̂(St+1, at+1,wwwt)

− q̂(St, At,wwwt)
]
xxx(St, At)

16 St ← St+1

17 At ← At+1

18 end
19 end
20 end

failure probability of π∗. Now, we modify the standard semi-
gradient TD(0) [7] in order to find vπ∗(I). The step size
α is decreased over the episodes. Since we are using a
linear function approximation, ∇v̂(s,www) = xxx(s). The pseudo
code of the modified semi-gradient TD(0) is provided in
Algorithm 4.

E. Experiments

In this section, we discuss the experiments we conducted
in the continuous state space shown in the Figure 5. Since
this is a continuous state space, we have to use function
approximation. As mentioned in the previous section, we
used Linear Function Approximation for our experiments.
We tried polynomial feature selection and tile coding feature
selection. With the polynomial feature extraction, the state
action values seem to diverge. We think the following might
be the reason. Consider two points which are next to each
other but one is in the unsafe region and the other is in
the safe region but very close to the goal region. So, we



Algorithm 4: Modified semi-gradient TD(0)
Input : π∗ synthesized from Algorithm 3, a

differentiable linear state-value function
parameterization v̂(s,www) = wwwTxxx(s)

Parameters: step size α ∈ (0, 1], γ = 1
1 Initialize value-function weights wwwt0 ∈ R2 arbitrarily

(e.g., wwwt0 = 000)
2 Loop for each episode:
3 St0 ← I
4 Loop for each step of the episode:
5 At ← π∗(St)
6 Take action At and observe St+1

7 if St+1 ∈ SG then
8 wwwt+1 ← wwwt − α v̂(St,wwwt)xxx(St)
9 break

10 end
11 else if St+1 ∈ Su then
12 wwwt+1 ← wwwt + α

[
1− v̂(St,wwwt)

]
xxx(St)

break
13 end
14 else
15 wwwt+1 ←

wwwt + α
[
γv̂(St+1,wwwt)− v̂(St,wwwt)

]
xxx(St)

16 St ← St+1

17 end
18 end
19 end

(a) η = 15 (b) η = 70

Fig. 6. Convergence of the Q-values of the initial state I and actions
W and E for two different η’s. The shaded region represent one standard
deviation.

would want these two states to have very different values but
we believe the polynomial feature generalization will result
in the two states having similar values. So, we present the
results using Tile coding in this report.

Similar to the discrete space, recall that the following
are the parameters - step size α ∈ (0, 1], ϵ > 0, rewards
λ,RG, η > 0, γ. We assumed the rewards to be non-
discounted. So, the γ is always set to 1. We used 100000
episodes for the control learning. The step size α and the ϵ
are decreased slowly for every 1000 episodes. We considered
the control cost λ to be 1 and the goal reward RG to be 5.
With these values of λ and RG we are able to show the
difference between multiple η values. With the same set of

(a) η = 15 (b) η = 70

Fig. 7. 100 sample trajectories generated using π∗ for η = 15 and η = 70.
The trajectories are color-coded; magenta paths go into the unsafe region
Su, while blue paths go to the goal region SG.

(a) (b)
Fig. 8. (a) No noise trajectories for η = 15 and η = 70 (b) Convergence
of Pfail for η = 15 and η = 70 with one standard deviation.

parameters except η, we ran the modified semi-gradient Sarsa
algorithm 3 for different η values.

In Figure 6, we show that the action-values of the initial
state I and action E and the action values of the initial state
I and action W converge for both the η values. We can
also see that the Q(I,W ) is greater than the Q(I, E) for the
smaller η = 15 and Q(I, E) is greater than the Q(I,W ) is
for the higher η = 70. At the end of modified semi-gradient
Sarsa 3, the agent learns the optimal greedy policy.

Figure 8 (a) shows the no noise trajectories for both the
η values. Similar to the discrete case, we use the optimal
deterministic greedy policy learnt from a noisy environment
at the end of the 100,000 episodes to plot trajectories in a
no noise environment. We can see that the agent takes the
shortest path although riskier for a smaller η and takes a
more safer although longer route for a higher η.

We estimated the probability of failure Pfail using the
modified semi-gradient TD prediction algorithm 4. Figure
8 (b) shows the Pfail values as the episodes increase for both
the η values. We plotted the Pfail for 100,000 episodes over
10 runs with a confidence interval of one standard deviation.
We can see that the Pfail value converges for both η = 15
and η = 70. We can also see that the Pfail value for a
smaller η is higher than the Pfail value for a higher η.

Finally, we plotted the sample trajectories using the opti-
mal deterministic greedy policy learnt at the of the control
algorithm. In Figure 7, we can see the sample trajectories
for both η values 15 and 70. The blue lines represent the
trajectories that go into the goal region and the magenta lines



represents the trajectories that go into the unsafe region. This
further provides evidence that longer but more safer route is
taken for higher eta values.

IV. CONCLUSION

In this project, we modified the standard RL algorithms
to solve the chance-constraint motion planning problem.
Through Lagrangian relaxation, we converted the chance-
constrained (risk-constrained) motion problem to a risk-
minimizing problem. We showed that by choosing an appro-
priate Lagrange multiplier, we can synthesize a policy which
has an appropriate level of safety. We also computed the
risk associated with the synthesized policies by modifying
the RL prediction algorithms. These algorithms have shown
promising results. In the future, we plan to extend the
presented results for the continuous action spaces.

REFERENCES

[1] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[2] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[3] K. Oguri, M. Ono, and J. W. McMahon, “Convex optimization
over sequential linear feedback policies with continuous-time chance
constraints,” in 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 6325–6331.

[4] K. M. Frey, T. J. Steiner, and J. P. How, “Collision probabilities for
continuous-time systems without sampling,” in Proc. Robot.: Sci. Syst.,
2020.

[5] B. Luders, M. Kothari, and J. How, “Chance constrained rrt for prob-
abilistic robustness to environmental uncertainty,” in AIAA guidance,
navigation, and control conference, 2010, p. 8160.

[6] B. Oksendal, Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[8] O. Andersson, M. Wzorek, and P. Doherty, “Deep learning quadcopter
control via risk-aware active learning,” in Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

[9] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in 2020
IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2020, pp. 1–7.

[10] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (rts): A safe and fast reinforcement learning safety
layer for continuous control,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3663–3670, 2021.


	Introduction
	Discrete State Space
	Problem Formulation
	Environment
	Chance Constraint
	Optimal Policy Synthesis

	Algorithm
	Risk Estimation of *
	Problem Formulation
	Algorithm

	Experiments

	Continuous State Space
	Problem Formulation
	Function Approximation
	Polynomial Features
	Tile Coding

	Algorithm
	Risk Estimation of *
	Experiments

	Conclusion
	References

