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What is Path Integral Control?
▶ A control algorithm inspired by the path integral formulation of

quantum mechanics.
▶ It solves stochastic optimal control problems via real-time Monte Carlo

simulations of open-loop systems.
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Why Path Integral Control?

▶ Applicable to nonlinear, stochastic optimal control problems.
▶ Simulator-driven: no analytical model required.

“Digital Twinning”
“Path integral 

control”
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Why Path Integral Control?

▶ Less susceptible to the curse of dimensionality
▶ Monte Carlo simulations can be parallelized on GPUs which makes it

effective for real-time control applications.

Figure: Grid-based approaches

Figure: Path-integral approach

1 A. Patil, G. Hanasusanto, T. Tanaka, “Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Com-
plexity Analysis," IEEE Control Systems Letters (L-CSS)
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Research Motivation and Prior Work

▶ The outcome of Monte Carlo simulation is probabilistic and suboptimal when the
sample size is finite; hence applying path integral controller to safety-critical
systems would require rigorous sample complexity analysis.

▶ To our knowledge not enough work has been done on the sample complexity
analysis of path integral control except the work by [Yoon 2022]1.

▶ Contributions of [Yoon 2022]: The authors considered the continuous-time path
integral control, and applied Chebyshev and Hoeffding inequalities to relate the
instantaneous (pointwise-in-time) error bound in control input and the sample
size of the Monte-Carlo simulations performed at that particular time instance.

▶ Limitations of [Yoon 2022]:
– The effect of time discretization is not addressed.
– It is not clear how the pointwise-in-time bound can be translated into a

more explicit, end-to-end (trajectory-level) error bound.
– The work does not provide machinery to compute the required sample

size to achieve an acceptable loss of control performance.

1 Yoon, Hyung-Jin, et al., "Sampling complexity of path integral methods for trajectory optimization," 2022 American
Control Conference (ACC).
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Our Contributions
(1) Derivation of a path integral formulation for discrete-time stochastic

Linear Quadratic Regulator (LQR) using Kullback-Leibler (KL) control
problem

(2) Derivation of an end-to-end (trajectory-level) bound on the error
between the optimal control signal (computed by the classical Riccati
solution) and the one obtained by the path integral method as a
function of sample sizes
Our analysis reveals that the sample size required exhibits a
logarithmic dependence on the dimension of the control input.

(3) Formulation of a chance-constrained optimization problem to quantify
the worst-case performance of the path integral LQR control. This
result, together with (2), allows us to relate the sample size and the
worst-case control performance of the path integral method.

While the stochastic LQR problem can be efficiently solved by the backward
Riccati recursion, our primary focus is to establish the foundation for a
sample complexity analysis of the path integral method when the analytical
expressions of optimal control law and the cost are available.
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Discrete-Time KL Control Problem
▶ Deterministic state transition law: xt+1 = Ft(xt , ut)

PXt+1|Xt ,Ut (dxt+1|xt , ut) = δFt (xt ,ut )(dxt+1)

▶ Nominal policy (can be stochastic): RUt |Xt

▶ Control policy to be designed (can be stochastic): QUt |Xt

▶ Probability distributions of the state-control trajectories:

QX0:T ,U0:T−1 =
∏T−1

t=0
PXt+1|Xt ,UtQUt |Xt

RX0:T ,U0:T−1 =
∏T−1

t=0
PXt+1|Xt ,UtRUt |Xt .

▶ Path cost: Ct:T (xt:T , ut:T−1) :=
∑T−1

k=t Ck(xk , uk)︸ ︷︷ ︸
stage-wise cost

+ CT (xT )︸ ︷︷ ︸
terminal cost

▶ KL control problem:
min

{QUt |Xt }
T−1
t=0

Ex0
Q C0:T (X0:T ,U0:T−1) + λD(QX0:T ,U0:T−1∥RX0:T ,U0:T−1).

λ balances the trade-off between the path cost and KL divergence
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KL Control Problem: Dynamic Programming

▶ Value function:

Jt(xt) := min
{QUk |Xk

}T−1
k=t

Ext
Q Ct:T (Xt:T ,Ut:T−1) + λD(QXt:T ,Ut:T−1∥RXt:T ,Ut:T−1).

▶ Theorem: For each t , the value function admits a representation

Jt(xt) = −λ logExt
R exp

(
− 1
λ
Ct:T (Xt:T ,Ut:T−1)

)
.

The optimal policy Q∗
Ut |Xt

for the KL control problem is expressed as

Q∗
Ut |Xt

(B|xt)=
∫
B
exp(−ρt(xt , ut)/λ)RUt |Xt (dut |xt)∫

Ut
exp(−ρt(xt , ut)/λ)RUt |Xt (dut |xt)

for each Borel set B , where ρt(xt , ut) := Ct(xt , ut) + Jt+1(F (xt , ut)).

Proof: Use Bellman’s optimality principle and the Legendre duality
between the KL divergence and free energy.
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KL Control Problem: Monte Carlo Simulations

▶ We proved: Jt(xt) = −λ log Ext
R exp

(
− 1

λ
Ct:T (Xt:T ,Ut:T−1)

)
.

▶ Let {xt:T (i), ut:T−1(i)}ni=1 be an ensemble of n sample state-control
trajectories under the reference policy {RUk |Xk

}T−1
k=t . Then

Jt(xt) ≈ −λ log

 1
n

n∑
i=1

r(i)


where r(i) := exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
is the reward of sample

path i .
▶ The expectation of the control input (we will use it later):

EQ∗(Ut |xt) =
∫
Ut

utQ
∗(dut |xt)

=
ER

[
Ut exp

(
− 1

λ
Ct:T (Xt:T ,Ut:T−1)

)]
ER

[
exp

(
− 1

λ
Ct:T (Xt:T ,Ut:T−1)

)]
≈
∑n

i=1 ut(i)r(i)∑n
i=1 r(i)

.
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is the reward of sample

path i .

▶ The expectation of the control input (we will use it later):

EQ∗(Ut |xt) =
∫
Ut

utQ
∗(dut |xt)

=
ER

[
Ut exp

(
− 1

λ
Ct:T (Xt:T ,Ut:T−1)

)]
ER

[
exp

(
− 1

λ
Ct:T (Xt:T ,Ut:T−1)

)]
≈
∑n

i=1 ut(i)r(i)∑n
i=1 r(i)

.
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Stochastic LQR: Classical Solution

▶ Compute the state feedback policy ut = kt(xt) that solves

min
{kt (·)}T−1

t=0

E
T−1∑
t=0

(
1
2
X⊤

t MtXt+
1
2
U⊤

t NtUt

)
+E
(

1
2
X⊤

TMTXT

)
s.t. Xt+1=AtXt+BtUt+Wt , Wt ∼ N (0,Ωt), X0 = x0.

where {Mt}Tt=0 and {Nt}T−1
t=0 are sequences of positive definite matrices.

▶ Optimal policy by solving backward Riccati Recursion

ut = kt(xt) = Ktxt , Kt = −(B⊤
t Θt+1Bt + Nt)

−1B⊤
t Θt+1At

where {Θt}Tt=0 is a sequence of positive definite matrices computed by
the backward Riccati recursion with ΘT = MT :

Θt = A⊤
t Θt+1At +Mt − A⊤

t Θt+1Bt(B
⊤
t Θt+1Bt + Nt)

−1B⊤
t Θt+1At .
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Stochastic LQR: Path Integral Solution
▶ Recover the classical LQR results using KL control framework
▶ Assumption2:For each t , there exists a positive definite matrix Ω̂t and

λ > 0 such that Nt = λΩ̂−1
t and BtΩ̂tB

⊤
t = Ωt .

▶ Consider a KL control problem with
– state transition law: Ft(xt , ut) = Atxt + Btut
– Reference Policy: RUt |Xt (ut |xt) = N (0, Ω̂t)
– cost function Ct(xt , ut) =

1
2x

⊤
t Mtxt

▶ Theorem: The optimal policy Q∗
Ut |Xt

for the above KL control problem:

Q∗
Ut |Xt

(ut |xt) = N (−Ĥ−1
t Ĝ⊤

t xt , λĤ
−1
t )

where Ĝt = A⊤
t Θ̂t+1Bt , Ĥt = B⊤

t Θ̂t+1Bt + λΩ̂−1
t and Θ̂t satisfies

Θ̂t = A⊤
t Θ̂t+1At +Mt −A⊤

t Θ̂t+1Bt(B
⊤
t Θ̂t+1Bt+λΩ̂−1

t )−1B⊤
t Θ̂t+1At

with Θ̂T = MT .
▶ Under the above assumption, EQ∗(ut |xt) = −Ĥ−1

t Ĝ⊤
t xt = Ktxt

coincides with the classical LQR solution.

2 This is a common assumption in the path integral control literature. See, e.g., [Kappen 2005] for its system
theoretic interpretation.
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t Ĝ⊤

t xt , λĤ
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−1
t )

where Ĝt = A⊤
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t Θ̂t+1Bt + λΩ̂−1
t and Θ̂t satisfies

Θ̂t = A⊤
t Θ̂t+1At +Mt −A⊤

t Θ̂t+1Bt(B
⊤
t Θ̂t+1Bt+λΩ̂−1

t )−1B⊤
t Θ̂t+1At

with Θ̂T = MT .
▶ Under the above assumption, EQ∗(ut |xt) = −Ĥ−1
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Stochastic LQR: Monte Carlo Simulations

▶ Recall that EQ∗(ut |xt) of the KL control problem can be computed via
Monte Carlo simulations.

▶ This implies that LQR solution can be computed via Monte Carlo
simulations:

– At every time-step t , sample nt trajectories {xt:T (i), ut:T−1(i)}nti=1
from the "uncontrolled" dynamics: Xt+1 = AtXt +Wt ,
Wt ∼ N (0,Ωt)

– Compute path cost of each sample path i :

r(i)=exp

(
− 1
λ

∑T

k=t

1
2
xk(i)

⊤Mkxk(i)

)
– Path integral LQR controller:

ût =

nt∑
i=1

r(i)∑nt
i=1 r(i)

ut(i).

▶ Does not require solving backward Riccati equation
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ût =

nt∑
i=1

r(i)∑nt
i=1 r(i)

ut(i).

▶ Does not require solving backward Riccati equation



17/25

Outline

Background
What is Path Integral Control?
Why Path Integral Control?

Motivation / Literature Review / Our Contributions

Discrete-Time Kullback-Leibler (KL) Control via Path Integral

Stochastic LQR via Path Integral

Sample Complexity Analysis

Upper Bound on the Control Performance

Example

Summary



18/25

Sample Complexity Analysis

▶ Define the empirical means of the numerator and the denominator as

Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
and Ê r

t =

∑nt
i=1 r(i)

nt
.

▶ Theorem: Let {ϵt}T−1
t=0 , {αt}T−1

t=0 and {βt}T−1
t=0 be given sequences of

positive numbers and ϵ :=
∑T−1

t=0 ϵ2t , α :=
∑T−1

t=0 αt , β :=
∑T−1

t=0 βt .
Suppose α+ β < 1. If nt satisfies

nt ≥

(̂
E r
t

√
2∥Ω̂t∥log 2m

βt
+
(
ϵt Ê

r
t+∥Ê ru

t ∥∞
)√

1
2 log 2

αt

)2
ϵ2t (Ê

r
t )4

and Ê r
t >

√
1

2nt
log 2

αt
, then ∥û − u∥2

∞ :=
∑T−1

t=0 ∥ût − ut∥2
∞ ≤ ϵ with

probability greater than or equal to 1 − α− β.
▶ The required number of samples depends only logarithmically on the

dimension of the control input m.
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Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
and Ê r
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Ê ru
t =

∑nt
i=1 r(i)ut(i)

nt
and Ê r
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r
t+∥Ê ru
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r
t )4

and Ê r
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Impact of ∥û − u∥ on the control performance

▶ Let Ût be the path integral control input. The closed-loop dynamics is

Xt+1 = AtXt + BtÛt +Wt , Wt ∼ N (0,Ωt)

and the accrued LQR cost is

L :=E

[
T−1∑
t=0

(
1
2
X⊤

t MtXt+
1
2
Û⊤

t NtÛt

)
+

1
2
X⊤

TMTXT

]
.

▶ Introducing Vt := Ût − Ut , the dynamics can be rewritten as

Xt+1 = ÃtXt + BtVt +Wt , Wt ∼ N (0,Ωt)

where Ãt := At + BtKt . The LQR cost can be written in terms of Vt as

L = E
T−1∑
t=0

(
1
2
X⊤

t M̃tXt+X⊤
t ÑtVt +

1
2
V⊤

t NtVt

)
+ E

[
1
2
X⊤

T MTXT

]
where M̃t := Mt + K⊤

t NtKt and Ñt := K⊤
t Nt .
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▶ Introducing Vt := Ût − Ut , the dynamics can be rewritten as

Xt+1 = ÃtXt + BtVt +Wt , Wt ∼ N (0,Ωt)

where Ãt := At + BtKt . The LQR cost can be written in terms of Vt as

L = E
T−1∑
t=0

(
1
2
X⊤

t M̃tXt+X⊤
t ÑtVt +

1
2
V⊤

t NtVt

)
+ E

[
1
2
X⊤

T MTXT

]
where M̃t := Mt + K⊤

t NtKt and Ñt := K⊤
t Nt .
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Impact of ∥û − u∥ on the control performance

▶ Goal: formulate a problem to search for the state feedback policy
vt = πt(xt) that maximizes L while satisfying

∑T−1
t=0 ∥vt∥2

∞ ≤ ϵ with
probability at least 1 − α− β.

▶ Chance-constrained LQR:

max
{πt (·)}T−1

t=0

E
T−1∑
t=0

(
1
2
X⊤

t M̃tXt+X⊤
t ÑtVt +

1
2
V⊤

t NtVt

)
+ E

[
1
2
X⊤

T MTXT

]
s.t. Xt+1 = ÃtXt + BtVt +Wt , Wt ∼ N (0,Ωt)

Pr
(∑T−1

t=0
∥vt∥2

∞ ≤ ϵ
)
≥ 1 − α− β.

▶ Let f ∗ be the value of the above chance-constrained LQR. If nt satisfies
the sample complexity bound then L ≤ f ∗ .

▶ Finding a worst-case policy πt that solves the above chance-constrained
LQR is inherently challenging (left as a topic for future work).
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Example
LQR problem: At =

[
0.9 −0.1
−0.1 0.8

]
, Bt =

[
1
0

]
, Ωt =

[
4 0
0 0

]
,Mt = 0.1I ,

Nt = 10. I represents an identity matrix of size 2 × 2.
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-1

0

PI
Analytical

(a) State trajectory (b) Control input trajectory
with n = 103 with n = 103
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-2

-1

0
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Analytical

0 10 20 30

0

0.05

0.1

(c) State trajectory (d) Control input trajectory
with n = 107 with n = 107

Figure: State and input trajectories for two values of n. The red
dashed line represents the solution obtained by the Riccati equation,
whereas the blue solid line represents the solution obtained by path
integral control. The bounds ut ± ϵt are plotted in (b) and (d).
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Summary

▶ We derived a path integral formulation for a discrete-time stochastic
LQR problem.

▶ An end-to-end bound on the error in the control signals was derived as
a function of sample size.
The required number of samples depends only logarithmically on
the dimension of the control input.

▶ We formulated a chance-constrained optimization problem to quantify
the worst-case control performance of the path integral LQR control.

▶ Future work:
– Build upon this work to carry out sample complexity analysis of
path integral for nonlinear continuous-time stochastic control
problems.

– Robustify the path integral control method by exploiting
techniques from H∞ control.
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