

Path Planning Using Formal Methods

Problem Formulation

- Configuration space: $\mathcal{D} \subseteq \mathbb{R}^n$, $n \in \mathbb{N}$, $n \ge 2$ ^{0.8}
- \mathcal{R} : a set of disjoint regions in \mathcal{D}
- $AP = \{\text{obstacle, goal}_i, \text{free}\}$
- $L: \mathcal{R} \to 2^{AP}$: properties associated to the ^{0.4} region in \mathcal{R} .
- x_0 : initial configuration of the robot

 $\mathcal{D} \subseteq R^2$

Problem Formulation continued...

- Goal: find a control policy C that generates a satisfying trajectory π (in the absence of uncertainties) or that maximizes the probability of satisfying an LTL formula ϕ (in the presence of uncertainties)
- Planning in the absence of uncertainties: finite transition system, $\mathcal{T} = (X, x_0, \Delta, AP, J)$
- Planning in the presence of uncertainties: MDP, $\mathcal{M} = (Q, q_0, \mathcal{A}, P, AP, K)$

Planning in the Absence of Uncertainties

- Mechanism:
 - 1. Construct a graph G = (V, E) using a PRM (Probabilistic RoadMap) based algorithm
 - 2. Design \mathcal{T} using G
 - 3. Generate a satisfying trajectory using closed system synthesis

Construct a Graph G

$$G = (V, E), V \subset \mathcal{D}, E \subseteq V \times V$$

Algorithm 1: Modified-PRM

1:
$$V \leftarrow \{x_0\} \cup \{Sample_i\}_{i=1,...,m}; E \leftarrow \emptyset$$

2: foreach $v \in V$ do
 $U \leftarrow Near(G = (V, E), v, r) \setminus \{v\};$
foreach $u \in U$ do
 \downarrow if $isSimpleEdge(v, u)$ then
 $\downarrow E \leftarrow E \cup \{(v, u), (u, v)\}$
3: return $G = (V, E)$

Construct a Graph *G*: *isSimpleEdge*(*v*, *u*)

isSimpleEdge(v, u)=1

isSimpleEdge(v, u)=0

Construct a Transition System \mathcal{T}

- Environment $\mathcal{E} = (\mathcal{D}, x_0, \mathcal{R}, AP, L)$
- Graph G = (V, E)
- $\mathcal{T} = (X, x_0, \Delta, AP, J)$
 - -X = V
 - $-\Delta = E$
 - $\forall x \in X, J(x) = L(R_k), \text{ where } R_k \in \mathcal{R} \text{ is a region in } \mathcal{D} \text{ such that } x \in R_k$

Closed System Synthesis

- $\phi = G((\neg obstacle) \land (Fgoal_1) \land (Fgoal_2) \land (Fgoal_3))$
- Find a trajectory, $\pi: \pi \vDash \phi$.

Things to Note...

- The transition system \mathcal{T} is an under-approximation of the Environment, $\mathcal{E} = (\mathcal{D}, x_0, \mathcal{R}, AP, L) : \pi$ can be implemented in \mathcal{E}
- modified-PRM is probabilistically complete: as the number of samples in the construction of the graph, m → ∞, the proposed mechanism finds a satisfying trajectory with probability 1 if such a trajectory exists

Results

Planning in the Presence of Uncertainties

- Mechanism:
 - 1. Abstraction of the ${\mathcal E}$ into an MDP ${\mathcal M}$

2. Synthesis of a control policy C for \mathcal{M} that maximizes the probability of satisfying ϕ using probabilistic synthesis tools

Construction of $\mathcal{M} = (Q, q_0, \mathcal{A}, P, AP, K)$

- Q =cells of the grid
- Initial state $q_0: x_0 \in q_0$
- $\forall q \in Q, \mathcal{A}(q) = \{right, up, left, down\}$
- Transition probabilities:
 - 0.8: successful transition
 - 0.1: move ± 45 deg to the intended direction
- The robot bounces back to its original state when it hits the boundary
- Labeling function *K*:
 - $\forall q \in Q, \text{ if } q \cap R_k \neq \emptyset \text{ and } L(R_k) = \{obstacle\} \text{ then } K(q) = L(R_k)$
 - $\forall q \in Q$, if $q \subseteq R_k$ and $L(R_k) = \{free\}$ or $\{goal_i\}$ then $K(q) = L(R_k)$

Synthesis of the Optimal Control Policy \mathcal{C}^*

- $\phi = \neg obstacleUgoal_1$
- $\mathcal{P}_{max}[\phi] = ?, \mathcal{C}^* = ?$

$$\begin{array}{ccc} \mathcal{M} \longrightarrow & \operatorname{Probabilistic} \\ \phi \longrightarrow & \operatorname{Model Checker} \\ \phi \longrightarrow & (\operatorname{PRISM}) \end{array} \xrightarrow{} \mathcal{P}_{max}[\phi]$$

Synthesis of the Optimal Control Policy \mathcal{C}^*

- $Q = Q^{yes} \cup Q^{no} \cup Q^?$
 - Q^{yes} : states that satisfy ϕ with probability 1 for some C
 - Q^{no} : states that don't satisfy ϕ for all C

)

- $Q^?$: remaining states
- y_q : probability of satisfying ϕ from state q

$$y_q = 1 \quad \forall q \in Q^{yes}$$

$$y_q = 1 \quad \forall q \in Q^{yes}$$

$$y_q = 0 \quad \forall q \in Q^{no}$$

$$y_q \ge \sum_{q' \in Q} P(q, \alpha, q') \cdot y_{q'} \quad \forall \alpha \in \mathcal{A}(q)$$

$$\forall q \in Q \setminus (Q^{yes} \cup Q^{no})$$

 $min_{y_{a}} \sum y_{a}$

Optimal Control Policy \mathcal{C}^*

Optimal Control Policy \mathcal{C}^*

$$\mathcal{P}_{max}[\phi] = 0.79$$

References

- S. Karaman, and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," International Journal of Robotics Research, vol. 30, pp. 846-894, 2011.
- C. Vasile and C. Belta, "Sampling-based temporal logic path planning," in Int. Conf. on Intelligent Robots and Systems. IEEE, Nov 2013, pp. 4817–4822.
- Yoo C, Fitch R and Sukkarieh S (2013) Provably-correct stochastic motion planning with safety constraints. In: Proceedings of IEEE ICRA, pp. 981–986.
- M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, "Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees," in Proc. ICRA, 2010, pp. 3227–3232.