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Problem Formulation

1

Configuration space: D S R", n € N, n > 2
R: a set of disjoint regions in D
AP = {obstacle, goal;, free} i
L: R — 247 properties associated to thee-
region in R.

0

X,: initial configuration of the robot J
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Problem Formulation continued...

« Goal: find a control policy C that generates a satisfying
trajectory = (in the absence of uncertainties) or that maximizes
the probability of satisfying an LTL formula ¢ (in the presence
of uncertainties)

* Planning in the absence of uncertainties: finite transition
system, T = (X, x4, A, AP, )

 Planning iIn the presence of uncertainties: MDP, M =
(Q,qq, A,P,AP,K)



Planning In the Absence of Uncertainties

e Mechanism:

1. Construct a graph G = (V, E) using a PRM (Probabilistic
RoadMap) based algorithm

2. Design T using G

Generate a satisfying trajectory using closed system
synthesis
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Construct a Graph G

G=W,E))VCD ECVXV

Algorithm 1: Modified-PRM
IV < {xo} U{Sample; }i—y
2: foreach v € V' do
U <+ Near(G = (V,E),v,r)\{v};
foreach v € U do
\» if isSimple Edge(v,u) then
| E<+ EUu{(v,u),(u,v)}

ﬂ?,; E<—®

3: return GG = (V, F)
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Construct a Graph G:isSimpleEdge (v, u)

R.2 i R2 R1
v
u //
\. u
v
isSimpleEdge(v, u)=1 isSimpleEdge(v, u)=1
R_2 u R1 R 2 R_1

% -
\"

isSimpleEdge(v, u)=1 isSimpleEdge(v, u)=0
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* Environment £ = (D, x,, R, AP, L)
 Graph ¢ = (V,E)
e T =(X,x0,A AP,])
—X=V
-~ A=E
— Vx € X,J(x) = L(Ry), where R, €
R i1saregion in D such that x € Ry,
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Closed System Synthesis

¢« ¢ = G((—uobstacle) A (Fgoaly) A (Fgoal,) A (Fgoalg))
* Find atrajectory, m: m &= ¢.

T —

Model Checker _
— Counterexample: T

M




Things to Note...

« The transition system 7" is an under-approximation of the
Environment, € = (D, xy, R, AP, L) : m can be implemented
In £

« modified-PRM is probabilistically complete: as the number of
samples in the construction of the graph, m — oo, the

proposed mechanism finds a satisfying trajectory with
probability 1 if such a trajectory exists
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Results

0.7




Planning in the Presence of
Uncertainties

 Mechanism:
1. Abstraction of the € into an MDP M

2. Synthesis of a control policy C for M that maximizes the
probability of satisfying ¢ using probabilistic synthesis tools
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Construction of M = (Q, gy, A, P, AP, K)

(@ = cells of the grid
« Initial state gy: xo € q¢
* Vq€Q, A(q) = {right,up, left, down}
» Transition probabilities:
— 0.8: successful transition
— 0.1: move +45 deg to the intended direction

» The robot bounces back to its original state when it
hits the boundary

« Labeling function K:
—VqeQ,ifgnR, +®and L(Ry) =
{obstacle} then K(q) = L(Ry,)

— VqeQ,ifq S R, and L(Ry) = {free} or
{goal;} then K(q) = L(Ry)
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Synthesis of the Optimal Control

Policy C*

* ¢ = —obstacleUgoal,
* Praxl®]=?,C*=7

M — Probabilistic
& Model Checker
(PRISM)

— Prax [¢

|_>C*
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Synthesis of the Optimal Control Policy C*

. Q=desUQn0UQ?
— (Q7Y®®: states that satisfy ¢ with probability 1 for some C
— Q™9: states that don’t satisfy ¢ for all C
— Q’: remaining states

* Y- probability of satisfying ¢ from state g

min,, z Vq

qeQ
subject to: yg=1 Vq€Qr®

YVq = 0 VvVqeQ™
¥aZ ) P@,a,q) vy VYa €A

q’'€qQ

Vg € Q\(Q7** U Q™)
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Optimal Control Policy C*

Prmaxld] = 0.79
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